7 research outputs found

    Synthesis, Structural Characterization, and Optical Properties of Benzene-Fused Tetracyclic and Pentacyclic Stiboles

    No full text
    The expectation that antimony (Sb) compounds should display phosphorescence emissions based on the “heavy element effect” prompted our interest in the introduction of antimony to a biaryl as the bridging atom in a fused heterole system. Herein, the synthesis, molecular structures, and optical properties of novel benzene-fused heteroacenes containing antimony or arsenic atoms are described. The stiboles and arsole were prepared by the condensation of dibromo(phenyl)stibane or dichloro(phenyl)arsine with dilithium intermediates derived from the corresponding dibromo compounds. Nuclear magnetic resonance (NMR) spectroscopy and X-ray crystal analysis revealed that the linear pentacyclic stibole was highly symmetric in both the solution and crystal states. In contrast, the curved pentacyclic stibole adopted a helical structure in solution, and surprisingly, only M helical molecules were crystallized from the racemate. All synthesized compounds produced very weak or no emissions at room temperature or in the solid state. In contrast, the linear penta- and tetracyclic stiboles exhibited clear phosphorescence emissions in the CHCl3 frozen matrix at 77 K under aerobic conditions

    Noninvasive Diagnosis of the Mitochondrial Function of Doxorubicin-Induced Cardiomyopathy Using In Vivo Dynamic Nuclear Polarization–Magnetic Resonance Imaging

    No full text
    Doxorubicin (DOX) induces dose-dependent cardiotoxicity via oxidative stress and abnormal mitochondrial function in the myocardium. Therefore, a noninvasive in vivo imaging procedure for monitoring the redox status of the heart may aid in monitoring diseases and developing treatments. However, an appropriate technique has yet to be developed. In this study, we demonstrate a technique for detecting and visualizing the redox status of the heart using in vivo dynamic nuclear polarization–magnetic resonance imaging (DNP–MRI) with 3-carbamoyl-PROXYL (CmP) as a molecular imaging probe. Male C57BL/6N mice were administered DOX (20 mg/kg) or saline. DNP–MRI clearly showed a slower DNP signal reduction in the DOX group than in the control group. Importantly, the difference in the DNP signal reduction rate between the two groups occurred earlier than that detected by physiological examination or clinical symptoms. In an in vitro experiment, KCN (an inhibitor of complex IV in the mitochondrial electron transport chain) and DOX inhibited the electron paramagnetic resonance change in H9c2 cardiomyocytes, suggesting that the redox metabolism of CmP in the myocardium is mitochondrion-dependent. Therefore, this molecular imaging technique has the potential to monitor the dynamics of redox metabolic changes in DOX-induced cardiomyopathy and facilitate an early diagnosis of this condition

    Quantitative Detection of Plasmodium falciparum Using, LUNA-FL, A Fluorescent Cell Counter

    No full text
    The microscopic examination of Giemsa-stained thin and/or thick blood films (Giemsa microscopy) is the standard method of malaria diagnosis. However, the results of the diagnosis significantly depend on the skills of clinical technicians. Furthermore, sample preparation and analysis are laborious and time-consuming. Therefore, in this study, we investigated if a commercially available fluorescent cell counter, LUNA-FL, was useful for the detection of Plasmodium parasite and the estimation of parasitemia. Whole blood samples from uninfected persons, spiked with P. falciparum-infected erythrocytes, were analysed. Most of the leucocytes and platelets were removed from whole blood samples with SiO2-nanofiber filters set on spin columns. The filtered samples were stained with acridine orange, and automatic detection, as well as counting of erythrocytes and parasites, were performed using LUNA-FL. Whole blood, with various levels of parasites, was analysed by Giemsa microscopy or with LUNA-FL to estimate parasitemia, and a comparative analysis was performed. The coefficient determination value of the regression line was high (R2 = 0.98), indicating that accurate quantitative parasite detection could be performed using LUNA-FL. LUNA-FL has a low running cost; it is compact, fast, and easy to operate, and may therefore be useful for point-of-care testing in the endemic areas
    corecore