60 research outputs found

    Vitamin K Induces Osteoblast Differentiation through Pregnane X Receptor-Mediated Transcriptional Control of the Msx2 Gene▿

    No full text
    Vitamin K is a fat-soluble vitamin that serves as a coenzyme for vitamin K-dependent carboxylase. Besides its canonical action, vitamin K binds to the steroid and xenobiotic receptor (SXR)/pregnane X receptor (PXR) and modulates gene transcription. To determine if the osteoprotective action of vitamin K is the result of the PXR/SXR pathway, we screened by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis the PXR/SXR target genes in an osteoblastic cell line (MC3T3-E1) treated with a vitamin K2 (menaquinone 4 [MK4]). Osteoblastic differentiation of MC3T3-E1 cells was induced by MK4. Msx2, an osteoblastogenic transcription factor, was identified as an MK4-induced gene. Functional analysis of the Msx2 gene promoter mapped a vitamin K-responsive element (PXR-responsive element [PXRE]) that was directly bound by a PXR/retinoid X receptor α heterodimer. In a chromatin immunoprecipitation analysis, PXR was recruited together with a coactivator, p300, to the PXRE in the Msx2 promoter. MK4-bound PXR cooperated with estrogen-bound estrogen receptor α to control transcription at the Msx2 promoter. Knockdown of either PXR or Msx2 attenuated the effect of MK4 on osteoblastic differentiation. Thus, the present study suggests that Msx2 is a target gene for PXR activated by vitamin K and suggests that the osteoprotective action of MK4 in the human mediates, at least in part, a genomic pathway of vitamin K signaling

    Downregulation of COL12A1 and COL13A1 by a selective EP2 receptor agonist, omidenepag, in human trabecular meshwork cells

    No full text
    Omidenepag isopropyl (OMDI) is an intraocular pressure (IOP)-lowering drug used to treat glaucoma. The active form of OMDI, omidenepag (OMD), lowers elevated IOP, the main risk factor for glaucoma, by increasing the aqueous humor outflow; however, a detailed understanding of this mechanism is lacking. To clarify the IOP-lowering mechanism of OMDI, the effects of OMD on the mRNA expression of the extracellular matrix, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs) were evaluated in human trabecular meshwork cells. Under 2D culture conditions, the mRNA expression of FN1, COL1A1, COL1A2, COL12A1, and COL13A1 decreased in a concentration-dependent manner after 6 or 24 h treatment with 10 nM, 100 nM, and 1 μM OMD, while that of COL18A1 decreased after 6 h treatment with 1 μM OMD. Significant changes in expression were observed for many MMP and TIMP genes. Under 3D culture conditions, the extracellular matrix-related genes COL12A1 and COL13A1 were downregulated by OMD treatment at all three concentrations. Under both 2D and 3D culture conditions, COL12A1 and COL13A1 were downregulated following OMD treatment. Reduction in the extracellular matrix contributes to the decrease in outflow resistance, suggesting that the downregulation of the two related genes may be one of the factors influencing the IOP-lowering effect of OMDI. Our findings provide insights for the use of OMDI in clinical practice

    Nesfatin-1 induces the phosphorylation levels of cAMP response element-binding protein for intracellular signaling in a neural cell line.

    Get PDF
    Nesfatin-1 is a novel anorexic peptide that reduces the food intake of rodents when administered either intraventricularly or intraperitoneally. However, the molecular mechanism of intracellular signaling via Nesfatin-1 is yet to be resolved. In the current study, we investigated the ability of different neuronal cell lines to respond to Nesfatin-1 and further elucidated the signal transduction pathway of Nesfatin-1. To achieve this, we transfected several cell lines with various combinations of reporter vectors containing different kinds of response elements and performed reporter assays with Nesfatin-1, its active midsegment encoding 30 amino acid residues (M30) and M30-derived mutants. Notably, we found that both Nesfatin-1 as well as M30, significantly increased cAMP response element (CRE) reporter activity in a mouse neuroblastoma cell line, NB41A3. An antagonist of Melanocortin 3/4 receptor, SHU9119, aborted the promoter activity, and a mutant M30, which exerts no anorexic effect in vivo did not induce the CRE reporter activity in NB41A3 cells. Western blotting analyses revealed that Nesfatin-1 and M30 significantly increased the phosphorylation levels of CRE-binding protein (CREB), without altering the intracellular cAMP levels. Further, our study showed that a mitogen-activated protein kinase (MAPK) kinase inhibitor and an L-type Calcium (Ca(2+)) channel blocker abolished the M30-induced CREB phosphorylation. Furthermore, the radio-receptor assay revealed that (125)I-Nesfatin-1 binds in a saturable fashion to the membrane fractions of the mouse hypothalamus and NB41A3 cells, with Kd values of 0.79 nM and 0.17 nM, respectively. Collectively, our findings indicate the presence of a Nesfatin-1-specific receptor on the cell surface of NB41A3 cells and mouse hypothalamus. Our study highlights that Nesfatin-1, via its receptor, induces the phosphorylation of CREB, thus activating the intracellular signaling cascade in neurons
    corecore