55 research outputs found

    Par6 regulates skeletogenesis and gut differentiation in sea urchin larvae

    Get PDF
    Partitioning-defective (par) genes were originally identified as genes that are essential for the asymmetric division of the Caenorhabditis elegans zygote. Studies have since revealed that the gene products are part of an evolutionarily conserved PAR-atypical protein kinase C system involved in cell polarity in various biological contexts. In this study, we analyzed the function of par6 during sea urchin morphogenesis by morpholino-mediated knockdown and by manipulation swapping of the primary mesenchyme cells (PMCs). Loss of Par6 resulted in defects in skeletogenesis and gut differentiation in larvae. Phenotypic analyses of chimeras constructed by PMC swapping showed that Par6 in non-PMCs is required for differentiation of archenteron into functional gut. In contrast, Par6 in both PMCs and ectodermal cells cooperatively regulates skeletogenesis. We suggest that Par6 in PMCs plays an immediate role in the deposition of biomineral in the syncytial cable, whereas Par6 in ectoderm may stabilize skeletal rods via an unknown signal(s). © 2012 Springer-Verlag

    Krüppel-like is required for nonskeletogenic mesoderm specification in the sea urchin embryo

    Get PDF
    金沢大学大学院自然科学研究科遺伝情報学The canonical Wnt pathway plays a central role in specifying vegetal cell fate in sea urchin embryos. SpKrl has been cloned as a direct target of nuclear β-catenin. Using Hemicentrotus pulcherrimus embryos, here we show that HpKrl controls the specification of secondary mesenchyme cells (SMCs) through both cell-autonomous and non-autonomous means. Like SpKrl, HpKrl was activated in both micromere and macromere progenies. To examine the functions of HpKrl in each blastomere, we constructed chimeric embryos composed of blastomeres from control and morpholino-mediated HpKrl-knockdown embryos and analyzed the phenotypes of the chimeras. Micromere-swapping experiments showed that HpKrl is not involved in micromere specification, while micromere-deprivation assays indicated that macromeres require HpKrl for cell-autonomous specification. Transplantation of normal micromeres into a micromere-less host with morpholino revealed that macromeres are able to receive at least some micromere signals regardless of HpKrl function. From these observations, we propose that two distinct pathways of endomesoderm formation exist in macromeres, a Krl-dependent pathway and a Krl-independent pathway. The Krl-independent pathway may correspond to the Delta/Notch signaling pathway via GataE and Gcm. We suggest that Krl may be a downstream component of nuclear β-catenin required by macromeres for formation of more vegetal tissues, not as a member of the Delta/Notch pathway, but as a parallel effector of the signaling (Krl-dependent pathway). © 2007 Elsevier Inc. All rights reserved

    Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton

    Get PDF
    AbstractOver the course of evolution, the acquisition of novel structures has ultimately led to wide variation in morphology among extant multicellular organisms. Thus, the origins of genetic systems for new morphological structures are a subject of great interest in evolutionary biology. The larval skeleton is a novel structure acquired in some echinoderm lineages via the activation of the adult skeletogenic machinery. Previously, VEGF signaling was suggested to have played an important role in the acquisition of the larval skeleton. In the present study, we compared expression patterns of Alx genes among echinoderm classes to further explore the factors involved in the acquisition of a larval skeleton. We found that the alx1 gene, originally described as crucial for sea urchin skeletogenesis, may have also played an essential role in the evolution of the larval skeleton. Unlike those echinoderms that have a larval skeleton, we found that alx1 of starfish was barely expressed in early larvae that have no skeleton. When alx1 overexpression was induced via injection of alx1 mRNA into starfish eggs, the expression patterns of certain genes, including those possibly involved in skeletogenesis, were altered. This suggested that a portion of the skeletogenic program was induced solely by alx1. However, we observed no obvious external phenotype or skeleton. We concluded that alx1 was necessary but not sufficient for the acquisition of the larval skeleton, which, in fact, requires several genetic events. Based on these results, we discuss how the larval expression of alx1 contributed to the acquisition of the larval skeleton in the putative ancestral lineage of echinoderms

    Annual Report 2010(KIYOMOTO Masato)

    No full text

    ウニ類の生殖シーズンの人為的調節

    No full text

    ウニ類の生殖シーズンの人為的調節

    No full text

    ウニ類の生殖シーズンの人為的調節

    No full text

    ウニ類の生殖シーズンの人為的調節

    No full text

    ウニ類の生殖シーズンの調節と卵の長期保存

    No full text
    corecore