96 research outputs found

    Temporal and Spatial Cellular Distribution of Neural Crest Derivatives and Alpha Cells during Islet Development

    Get PDF
    Recent studies have revealed that signals from neural crest (NC) derivatives regulate the mass, proliferation, and maturation of beta cells in developing fetal pancreas. However, little is known about the cellular distribution of NC derivatives during pancreatic development or the process whereby the developing islets are enclosed. We studied the temporal and spatial distribution of NC derivatives and endocrine cells at each developmental stage. At embryonic day 10.5 (E10.5) of mouse embryo, NC derivatives that migrated to the prospective pancreatic region were distributed in close proximity to pancreatic epithelial cells. As development advanced, most NC derivatives progressively surrounded endocrine rather than exocrine cells, and were distributed in closer proximity to alpha cells rather than to beta cells. At E20, approximately 70% of the NC derivatives enclosing endocrine cells were distributed in close proximity to alpha cells. Moreover, the expression of SynCAM, a Ca2+-independent homophilic trans-cell adhesion molecule, was confirmed from E16.5 on and was more remarkable at the cell boundaries of alpha cells and NC derivatives. These findings suggest that NC derivatives might be distributed in close proximity to alpha cells as a result of homophilic binding of SynCAM expressed by alpha cells and NC derivatives during islet development

    Visual discrimination of optical material properties : A large-scale study

    Get PDF
    Publisher Copyright: © 2022, Journal of Vision. All Rights Reserved.Complex visual processing involved in perceiving the object materials can be better elucidated by taking a variety of research approaches. Sharing stimulus and response data is an effective strategy to make the results of different studies directly comparable and can assist researchers with different backgrounds to jump into the field. Here, we constructed a database containing several sets of material images annotated with visual discrimination performance.We created the material images using physically based computer graphics techniques and conducted psychophysical experiments with them in both laboratory and crowdsourcing settings. The observer’s task was to discriminate materials on one of six dimensions (gloss contrast, gloss distinctness of image, translucent vs. opaque, metal vs. plastic, metal vs. glass, and glossy vs. painted). The illumination consistency and object geometry were also varied.We used a nonverbal procedure (an oddity task) applicable for diverse use cases, such as cross-cultural, cross-species, clinical, or developmental studies. Results showed that the material discrimination depended on the illuminations and geometries and that the ability to discriminate the spatial consistency of specular highlights in glossiness perception showed larger individual differences than in other tasks. In addition, analysis of visual features showed that the parameters of higher order color texture statistics can partially, but not completely, explain task performance. The results obtained through crowdsourcing were highly correlated with those obtained in the laboratory, suggesting that our database can be used even when the experimental conditions are not strictly controlled in the laboratory. Several projects using our dataset are underway.Peer reviewe

    Reciprocal interaction with G-actin and tropomyosin is essential for aquaporin-2 trafficking

    Get PDF
    Trafficking of water channel aquaporin-2 (AQP2) to the apical membrane and its vasopressin and protein kinase A (PKA)–dependent regulation in renal collecting ducts is critical for body water homeostasis. We previously identified an AQP2 binding protein complex including actin and tropomyosin-5b (TM5b). We show that dynamic interactions between AQP2 and the actin cytoskeleton are critical for initiating AQP2 apical targeting. Specific binding of AQP2 to G-actin in reconstituted liposomes is negatively regulated by PKA phosphorylation. Dual color fluorescence cross-correlation spectroscopy reveals local AQP2 interaction with G-actin in live epithelial cells at single-molecule resolution. Cyclic adenosine monophosphate signaling and AQP2 phosphorylation release AQP2 from G-actin. In turn, AQP2 phosphorylation increases its affinity to TM5b, resulting in reduction of TM5b bound to F-actin, subsequently inducing F-actin destabilization. RNA interference–mediated knockdown and overexpression of TM5b confirm its inhibitory role in apical trafficking of AQP2. These findings indicate a novel mechanism of channel protein trafficking, in which the channel protein itself critically regulates local actin reorganization to initiate its movement

    Spatial and temporal pattern for the dentition in the Australian lungfish revealed with sonic hedgehog expression profile

    No full text
    We report a temporal order of tooth addition in the Australian lungfish where timing of tooth induction is sequential in the same pattern as osteichthyans along the lower jaw. The order of tooth initiation in Neoceratodus starts from the midline tooth, together with left and right ones at jaw position 2, followed by 3 and then 1. This is the pattern order for dentary teeth of several teleosts and what we propose represents a stereotypic initiation pattern shared with all osteichthyans, including the living sister group to all tetrapods, the Australian lungfish. This is contrary to previous opinions that the lungfish dentition is otherwise derived and uniquely different. Sonic hedgehog (shh) expression is intensely focused on tooth positions at different times corresponding with their initiation order. This deployment of shh is required for lungfish tooth induction, as cyclopamine treatment results in complete loss of these teeth when applied before they develop. The temporal sequence of tooth initiation is possibly regulated by shh and is know to be required for dentition pattern in other osteichthyans, including cichlid fish and snakes. This reflects a shared developmental process with jawed vertebrates at the level of the tooth module but differs with the lack of replacement teeth

    Henoch-Schönlein purpura (IgA vasculitis) developing after postoperative wound infection by methicillin-resistant Staphylococcus aureus

    No full text
    Henoch-Schönlein purpura (HSP) is an acute small-vessel leukocytoclastic vasculitis, affecting the skin, joints, gastrointestinal tract and kidneys. Its prognosis depends on the severity of nephritis. A wide variety of pathogens, drugs, and other environmental exposures have been associated with HSP. Although group A β-haemolytic streptococcus has been the most studied, the majority of cases showed no direct link to streptococcal infection. Here we report a case of methicillin-resistant Staphylococcus aureus (MRSA) infection-associated HSP. A 68-year-old woman underwent a coronary artery bypass surgery. After the surgery, a postoperative chest wound was infected by MRSA and sternal osteomyelitis developed. Palpable purpura then appeared on the extremities, followed by hematuria, proteinuria and increased serum creatine. Treatments with antibiotics and debridement of the infected wound and sequestrum resulted in rapid improvement of skin symptoms. Renal function partially recovered, however mild hematuria and proteinuria remained. Published work review and the present case suggest that Staphylococcal infection-associated HSP frequently involves kidney disease and its prognosis is likely to be poor compared to a common type of HSP. Further studies are needed to establish an appropriate treatment strategy for Staphylococcal infection-associated HSP

    Acquisition of glial cells missing 2 Enhancers Contributes to a Diversity of Ionocytes in Zebrafish

    Get PDF
    Glial cells missing 2 (gcm2) encoding a GCM-motif transcription factor is expressed in the parathyroid in amniotes. In contrast, gcm2 is expressed in pharyngeal pouches (a homologous site of the parathyroid), gills, and H +-ATPase–rich cells (HRCs), a subset of ionocytes on the skin surface of the teleost fish zebrafish. Ionocytes are specialized cells that are involved in osmotic homeostasis in aquatic vertebrates. Here, we showed that gcm2 is essential for the development of HRCs and Na +-Cl 2 co-transporter–rich cells (NCCCs), another subset of ionocytes in zebrafish. We also identified gcm2 enhancer regions that control gcm2 expression in ionocytes of zebrafish. Comparisons of the gcm2 locus with its neighboring regions revealed no conserved elements between zebrafish and tetrapods. Furthermore, We observed gcm2 expression patterns in embryos of the teleost fishes Medaka (Oryzias latipes) and fugu (Fugu niphobles), the extant primitive ray-finned fishes Polypterus (Polypterus senegalus) and sturgeon (a hybrid of Huso huso 6 Acipenser ruhenus), and the amphibian Xenopus (Xenopus laevis). Although gcm2-expressing cells were observed on the skin surface of Medaka and fugu, they were not found in Polypterus, sturgeon, or Xenopus. Our results suggest that an acquisition of enhancers for the expression of gcm
    corecore