148 research outputs found

    DOACs for ProteinS deficiency

    Get PDF
    Protein S (PS) deficiency is an inherited thrombophilia associated with an increased risk of venous thromboembolism (VTE). In Japan, unfractionated heparin followed by warfarin has been historically applied for the treatment of VTE. Recent evidence showed that direct oral anticoagulants (DOACs) were non-inferior to standard therapy with warfarin, with significantly less bleeding in patients with VTE. However, it is unknown whether DOACs are effective for the treatment of VTE in patients with thrombophilia, including protein S deficiency, due to lack of evidence. Here, we report a case of recurrent venous thrombosis during edoxaban therapy in a patient with protein S deficiency, which was successfully treated using high-dose apixaban therapy

    Temporal and Spatial Cellular Distribution of Neural Crest Derivatives and Alpha Cells during Islet Development

    Get PDF
    Recent studies have revealed that signals from neural crest (NC) derivatives regulate the mass, proliferation, and maturation of beta cells in developing fetal pancreas. However, little is known about the cellular distribution of NC derivatives during pancreatic development or the process whereby the developing islets are enclosed. We studied the temporal and spatial distribution of NC derivatives and endocrine cells at each developmental stage. At embryonic day 10.5 (E10.5) of mouse embryo, NC derivatives that migrated to the prospective pancreatic region were distributed in close proximity to pancreatic epithelial cells. As development advanced, most NC derivatives progressively surrounded endocrine rather than exocrine cells, and were distributed in closer proximity to alpha cells rather than to beta cells. At E20, approximately 70% of the NC derivatives enclosing endocrine cells were distributed in close proximity to alpha cells. Moreover, the expression of SynCAM, a Ca2+-independent homophilic trans-cell adhesion molecule, was confirmed from E16.5 on and was more remarkable at the cell boundaries of alpha cells and NC derivatives. These findings suggest that NC derivatives might be distributed in close proximity to alpha cells as a result of homophilic binding of SynCAM expressed by alpha cells and NC derivatives during islet development

    Methylation Analysis in Treatment-Resistant Schizophrenia

    Get PDF
    Schizophrenia is a mental illness that involves both genetic and environmental factors. Clozapine, an atypical antipsychotic, is a well-established therapy for treatment-resistant schizophrenia. In this study, we focused on a set of monozygotic twins with treatment-resistant schizophrenia in which one twin effectively responded to clozapine treatment and the other did not. Our previous study generated neurons from induced pluripotent stem (iPS) cells derived from these patients and compared the transcriptome profiles between mock- and clozapine-treated neurons. In this study, we performed genome-wide DNA methylation profiling to investigate the mechanisms underlying gene expression changes. First, we extracted the differentially methylated sites from each twin based on statistical analysis. Then, we combined the DNA methylation profiling with transcriptome profiling from our previous RNA-seq data. Among the genes with altered methylation and expression, we found the different proportions of the genes related to neuronal and synaptic functions between the clozapine responder and non-responder (35.7 and 6.7%, respectively). This trend was observed even when the basal differences between the responder and non-responder was excluded. These results suggest that effective clozapine action may correct the abnormalities of neuronal and synapse functions in schizophrenia via changes in methylation

    Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice

    Get PDF
    筋ジストロフィーのゲノム編集治療を目指したLNP-mRNA輸送システムの開発. 京都大学プレスリリース. 2021-12-08.Nanotechnology for genome editing in multiple muscles simultaneously. 京都大学プレスリリース. 2021-12-08.Genome editing therapy for Duchenne muscular dystrophy (DMD) holds great promise, however, one major obstacle is delivery of the CRISPR-Cas9/sgRNA system to skeletal muscle tissues. In general, AAV vectors are used for in vivo delivery, but AAV injections cannot be repeated because of neutralization antibodies. Here we report a chemically defined lipid nanoparticle (LNP) system which is able to deliver Cas9 mRNA and sgRNA into skeletal muscle by repeated intramuscular injections. Although the expressions of Cas9 protein and sgRNA were transient, our LNP system could induce stable genomic exon skipping and restore dystrophin protein in a DMD mouse model that harbors a humanized exon sequence. Furthermore, administration of our LNP via limb perfusion method enables to target multiple muscle groups. The repeated administration and low immunogenicity of our LNP system are promising features for a delivery vehicle of CRISPR-Cas9 to treat skeletal muscle disorders

    Optics and Quantum Electronics

    Get PDF
    Contains reports on eleven research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)National Science Foundation (Grant ECS83-05448)National Science Foundation (Grant ECS83-10718)National Science Foundation (Grant ECS82-11650)National Science Foundation (Grant ECS84-06290)U.S. Air Force - Office of Scientific Research (Contract AFOSR-85-0213)National Institutes of Health (Grant 1 RO1 GM35459

    The nitric oxide dependence of cutaneous microvascular function to independent and combined hypoxic cold exposure

    Get PDF
    Hypoxic modulation of nitric oxide (NO) production pathways in the cutaneous microvasculature and its interaction with cold-induced reflex vasoconstriction, independent of local cooling, have yet to be identified. This study assessed the contribution of NO to nonglabrous microvasculature perfusion during hypoxia and whole body cooling with concomitant inhibition of NO synthase [NOS; via NG-nitro-l-arginine methyl ester (l-NAME)] and the nitrite reductase, xanthine oxidase (via allopurinol), two primary sources of NO production. Thirteen volunteers were exposed to independent and combined cooling via water-perfused suit (5°C) and normobaric hypoxia (FIO2, 0.109 ± 0.002). Cutaneous vascular conductance (CVC) was assessed across four sites with intradermal microdialysis perfusion of 1) lactated Ringers solution (control), 2) 20 mmol l-NAME, 3) 10 µmol allopurinol, or 4) combined l-NAME/allopurinol. Effects and interactions were assessed via four-way repeated measures ANOVA. Independently, l-NAME reduced CVC (43%, P < 0.001), whereas allopurinol did not alter CVC (P = 0.5). Cooling decreased CVC (P = 0.001), and the reduction in CVC was consistent across perfusates (~30%, P = 0.9). Hypoxia increased CVC (16%, P = 0.01), with this effect abolished by l-NAME infusion (P = 0.04). Cold-induced vasoconstriction was blunted by hypoxia, but importantly, hypoxia increased CVC to a similar extent (39% at the Ringer site) irrespective of environmental temperature; thus, no interaction was observed between cold and hypoxia (P = 0.1). l-NAME restored vasoconstriction during combined cold-hypoxia (P = 0.01). This investigation suggests that reflex cold-induced cutaneous vasoconstriction acts independently of NO suppression, whereas hypoxia-induced cutaneous vasodilatation is dependent on NOS-derived NO production

    Optics and Quantum Electronics

    Get PDF
    Contains reports on ten research projects.Joint Services Electronics Program (Contract DAALO3-86-K-0002)National Science Foundation (Grant ECS 83-05448)National Science Foundation (Grant ECS 83-10718)National Science Foundation (Grant ECS 82-11650)National Science Foundation (Grant ECS 84-13178)National Science Foundation (Grant ECS 85-52701)US Air Force - Office of Scientific Research (Contract AFOSR-85-0213)National Institutes of Health (Contract 5-RO1-GM35459)U.S. Navy - Office of Naval Research (Contract N00014-86-K-0117

    Differential gene expression profiles in neurons generated from lymphoblastoid B-cell line-derived iPS cells from monozygotic twin cases with treatment-resistant schizophrenia and discordant responses to clozapine

    Get PDF
    Schizophrenia is a chronic psychiatric disorder with complex genetic and environmental origins. While many antipsychotics have been demonstrated as effective in the treatment of schizophrenia, a substantial number of schizophrenia patients are partially or fully unresponsive to the treatment. Clozapine is the most effective antipsychotic drug for treatment-resistant schizophrenia; however, clozapine has rare but serious side-effects. Furthermore, there is inter-individual variability in the drug response to clozapine treatment. Therefore, the identification of the molecular mechanisms underlying the action of clozapine and drug response predictors is imperative. In the present study, we focused on a pair of monozygotic twin cases with treatment-resistant schizophrenia, in which one twin responded well to clozapine treatment and the other twin did not. Using induced pluripotent stem (iPS) cell-based technology, we generated neurons from iPS cells derived from these patients and subsequently performed RNA-sequencing to compare the transcriptome profiles of the mock or clozapine-treated neurons. Although, these iPS cells similarly differentiated into neurons, several genes encoding homophilic cell adhesion molecules, such as protocadherin genes, showed differential expression patterns between these two patients. These results, which contribute to the current understanding of the molecular mechanisms of clozapine action, establish a new strategy for the use of monozygotic twin studies in schizophrenia research

    Effect of Clozapine on DNA Methylation in Peripheral Leukocytes from Patients with Treatment-Resistant Schizophrenia

    Get PDF
    Clozapine is an atypical antipsychotic, that is established as the treatment of choice for treatment-resistant schizophrenia (SCZ). To date, no study investigating comprehensive DNA methylation changes in SCZ patients treated with chronic clozapine has been reported. The purpose of the present study is to reveal the effects of clozapine on DNA methylation in treatment-resistant SCZ. We conducted a genome-wide DNA methylation profiling in peripheral leukocytes (485,764 CpG dinucleotides) from treatment-resistant SCZ patients treated with clozapine (n = 21) in a longitudinal study. Significant changes in DNA methylation were observed at 29,134 sites after one year of treatment with clozapine, and these genes were enriched for “cell substrate adhesion” and “cell matrix adhesion” gene ontology (GO) terms. Furthermore, DNA methylation changes in the CREBBP (CREB binding protein) gene were significantly correlated with the clinical improvements. Our findings provide insights into the action of clozapine in treatment-resistant SCZ

    A Case of Chronic Thromboembolic Pulmonary Hypertension Secondary to Myeloproliferative Disease

    Get PDF
    A woman in her 60s presented with shortness of breath on exertion and was admitted to a nearby hospital in March 200X. Contrast-enhanced computer tomography scan showed contrast defect images in the pulmonary artery and lower extremity vein. She was diagnosed with pulmonary embolism and deep venous thrombosis and anticoagulant therapy was started. At the same time, a blood test revealed an abnormal increased platelet count(740,000/μl), and she was diagnosed as myeloproliferative disease(primary myelofibrosis, JAK2 mutation +). We follow up with oral administration of a steroid because she had a low risk of primary myelofibrosis. However, the symptom had been lasting, she was admitted into our hospital for examining the origin of symptom and treatment. Cardiac echocardiography suggested the presence of pulmonary hypertension, and lung ventilation perfusion scintigraphy showed widespread wedge accumulation defect, depressed area in bilateral lungs, and ventilator blood flow mismatch. In cardiac catheterization, the mean pulmonary artery pressure was as high as 37mmHg. Per the test results, she was diagnosed chronic thromboembolic pulmonary hypertension(CTEPH)secondary to primary myelofibrosis. We proposed invasive treatment(pulmonary artery endarterectomy, balloon pulmonary arterioplasty), but she desired just oxygen administration and medication therapy. It is reported that CTEPH develops in an organized thrombus after acute pulmonary embolism, but the mechanism of that development has not been revealed. In this case with primary myelofibrosis, we consider that the decrease of pulmonary vascular bed is due to a blood cell disorder and vascular remodeling is due to an increase of vascular endothelial growth factor and platelet derived growth factor secreted by abnormal increased platelet contributed to elevation of pulmonary artery pressure
    corecore