46 research outputs found

    Genetic factors derived from the MRL/MpJ mouse function to maintain the integrity of spermatogenesis after heat exposure

    Get PDF
    MRL/MpJ mice possess highly heat-shock-resistant spermatocytes (HRS) in comparison with C57BL/6 mice. This resistance depends on the MRL/MpJ-type loci at the 81 cM region of Chromosome (Chr) 1 and the 40 cM region of Chr 11. To evaluate the functions of these loci in detail, we examined the histopathological changes resulting from experimental cryptorchidism or transient scrotal heat stress (SHS) in the testes of C57BL/6-based congenic strains (B6.MRLc1, B6.MRLc11, and B6.MRLc1c11) carrying the MRL/MpJ-derived loci responsible for HRS. Among cryptorchid testes from congenic strains, those in B6.MRLc1c11 mice showed the highest heat resistance, indicating that the genetic interactions between MRL/MpJ-derived HRS loci on Chrs 1 and 11 may be important for maintaining spermatogenesis under continuous testicular hyperthermia. In contrast, immediately after SHS induction, germ cell loss via apoptosis was inhibited in B6.MRLc11 and B6.MRLc1c11 mice, similar to that in MRL/MpJ mice. However, this HRS phenotype was not observed in C57BL/6 or B6.MRLc1 mice after SHS induction. Furthermore, testicular calcification owing to long-term damage by SHS induction was inhibited in all congenic strains in comparison with that in C57BL/6 mice, indicating that each MRL/MpJ-derived locus on Chrs 1 and 11 acted independently to facilitate the recovery of heat-induced testicular damage by inhibiting calcification. B6.MRLc11 and B6.MRLc1c11 mice showed greater recovery in spermatogenesis than B6.MRLc1 mice 60 days after SHS induction. Therefore, the MRL/MpJ-derived HRS locus on Chr 11 might play an important role in recovery from heat stress damage. On the basis of these results, we concluded that MRL/MpJ-derived loci on Chrs 1 and 11 cooperatively or independently regulate testicular heat sensitivity depending on the various heat stresses

    Ovarian mast cells migrate toward ovary- fimbria connection in neonatal MRL/MpJ mice

    Get PDF
    MRL/MpJ mice have abundant ovarian mast cells (MCs) as compared with other strains at postnatal day 0 (P0); however, they sharply decrease after birth. These ovarian MCs, particularly beneath the ovarian surface epithelium (SE), which express mucosal MC (MMC) marker, might participate in early follicular development. This study investigated the changes in spatiotemporal distribution of MCs in the perinatal MRL/MpJ mouse ovaries. At P0 to P7, the MCs were densely localized to the ovary, especially their caudomedial region around the ovary-fimbria connection. The neonatal ovarian MCs showed intermediate characteristics of MMC and connective tissue MC (CTMC), and the latter phenotype became evident with aging. However, the expression ratio of the MMC to CTMC marker increased from P0 to P4 in the MRL/MpJ mouse ovary. Similarly, the ratio of MCs facing SE to total MC number increased with aging, although the number of ovarian MCs decreased, indicating the relative increase in MMC phenotypes in the early neonatal ovary. Neither proliferating nor apoptotic MCs were found in the MRL/MpJ mouse ovaries. The parenchymal cells surrounding MCs at ovary-fimbria connection showed similar molecular expression patterns (E-cadherin(+)/Foxl2(-)/Gata4(+)) as that of the ovarian surface epithelial cells. At P2, around the ovary-fimbria connection, c-kit - immature oocytes formed clusters called nests, and some MCs localized adjacent to c-kit oocytes within the nests. These results indicated that in postnatal MRL/MpJ mice, ovarian MCs changed their distribution by migrating toward the parenchymal cells composing ovary-fimbria connection, which possessed similar characteristics to the ovarian surface epithelium. Thus, we elucidated the spatiotemporal alterations of the ovarian MCs in MRL/MpJ mice, and suggested their importance during the early follicular development by migrating toward the ovary-fimbria connection. MRL/MpJ mice would be useful to elucidate the relationship between neonatal immunity and reproductive systems

    Hydronephrosis with ureteritis developed in C57BL/6N mice carrying the congenic region derived from MRL/MpJ-type chromosome 11

    Get PDF
    Inbred MRL/MpJ mice show several unique phenotypes in tissue regeneration processes and the urogenital and immune systems. Clarifying the genetic and molecular bases of these phenotypes requires the analysis of their genetic susceptibility locus. Herein, hydronephrosis development was incidentally observed in MRL/MpJ-derived chromosome 11 (D11Mit21-212)-carrying C57BL/6N-based congenic mice, which developed bilateral or unilateral hydronephrosis in both males and females with 23.5% and 12.5% prevalence, respectively. Histopathologically, papillary malformations of the transitional epithelium in the pelvic-ureteric junction seemed to constrict the ureter luminal entrance. Characteristically, eosinophilic crystals were observed in the lumen of diseased ureters. These ureters were surrounded by infiltrating cells mainly composed of numerous CD3(+)T-cells and B220(+)B-cells. Furthermore, several Iba-1(+)macrophages, Gr-1(+)granulocytes, mast cells and chitinase 3-like 3/Ym1 (an important inflammatory lectin)-positive cells were detected. Eosinophils also accumulated to these lesions in diseased ureters. Some B6.MRL-(D11Mit21-D11Mit212) mice had duplicated ureters. We determined>100 single nucleotide variants between C57BL/6N- and MRL/MpJ-type chromosome 11 congenic regions, which were associated with nonsynonymous substitution, frameshift or stopgain of coding proteins. In conclusion, B6.MRL-(D11Mit21-D11Mit212) mice spontaneously developed hydronephrosis due to obstructive uropathy with inflammation. Thus, this mouse line would be useful for molecular pathological analysis of obstructive uropathy in experimental medicine
    corecore