47 research outputs found

    Visualization of H? Dynamics in Extraction Region of Negative-Ion Source by Hα Imaging Spectroscopy

    Get PDF
    We developed a new imaging spectroscopy diagnostic tool for Hα emission and installed it on a negative hydrogen ion (H?) source to investigate the H? dynamics in the extraction region. During beam extraction, the Hα emission dropped; the same drop also appeared in the H? density (as measured by cavity ring-down spectroscopy). The reduction in the Hα emission results from the reduction in the excited hydrogen population caused by mutual neutralization processes between H+ and H? ions, which in turn are due to a decrease in the H? density. We find a reduction structure in Hα that is observed inside the plasma farther than 20 mm from the plasma grid (PG) surface. The result indicates that H? ions produced at the PG surface accumulate in the extraction region, so we conclude that they flow toward the PG apertures

    LHDにおけるNBI用水素負イオン源とビーム生成の最新の研究成果

    Get PDF
    The state of hydrogen plasma in the extraction region in a hydrogen negative-ion (H−) source for NBI has been investigated. We clearly observe an improvement of H− density owing to the surface production effect with Cs seeding. H− ions are widely distributed in the extraction region which is obtained by movable cavity ring down (CRD). We confirm a negative ion rich plasma with a few electrons in the extraction region, which state is important for reduction of electron contamination in extracting beam. An extraction area is reached 30mm from the PG surface, which is measured by a 2D imaging diagnostic for Hα emission. We find the insensitive area for H− extraction at the PG surface between the apertures. Negative ions produced at the surface are considered tohave been supplied in the extraction region. The flow velocity of H− ions is obtained by a four-pin Langmuir probe using a photodetachment technique with an Nd:YAG laser. H− ion flows from the plasma grid surface, and its direction drastically changes at 20mm from the production surface. This flow behavior is considered to be an important characteristic for improving H− density in the extraction region

    Validation of the distribution of stripping loss neutrals in the accelerator of the negative ion source

    Get PDF
    The difference of the stripping loss between hydrogen and deuterium is examined using two approaches. The first is the measurement of the optical beam emission. The wavelength of beam emission spectrum reflects the energy distribution of beam particles by the Doppler effect. The low-energy stripping peak is observed in the energy band corresponding to the extraction voltage, and also a moderate shoulder is distributed in the lower energy region. Secondly, the spatial and the energy distribution in the accelerator is estimated by the attenuation calculation using the vacuum pressure distribution in the accelerator. Stripping neutrals are concentrated in the low energy region, and a peak is formed at 9 keV in the energy distribution due to stripping neutrals inside the extraction grid aperture. The total stripping loss inside the accelerator is 16% for hydrogen and 24% for deuterium. The calculated Doppler-shifted spectra for hydrogen and deuterium clearly show the peak with the moderate shoulder on the redshift side, which is consistent with the measured results

    Exploring deuterium beam operation and the behavior of the co-extracted electron current in a negative-ion-based neutral beam injector

    Get PDF
    The achievements of the deuterium beam operation of a negative-ion-based neutral beam injector (N-NBI) in the large helical device (LHD) are reported. In beam operation in LHD-NBIs, both hydrogen (H) and deuterium (D) neutral beams were generated by changing the operation gas using the same accelerator. The maximum accelerated deuterium negative-ion current () reaches 46.2 A from two beam sources with the averaged current density being 190 A m−2 for 2 s, and the extracted electron to accelerated ion current ratio () increases to 0.39 using 5.6 V high bias voltage in the first deuterium operation in 2017. An increase of electron density in the vicinity of the plasma grid (PG) surface, which is considered the main reason for the increase of co-extracted electrons in a beam, is confirmed by the half-size research negative-ion source in the neutral beam test stand at the National Institute for Fusion Science (NIFS). The deuterium negative-ion density is also larger than the hydrogen negative-ion density in the vicinity of the PG surface using the same discharge conditions. In the latest experimental campaign in 2018, increases to 55.4 A with the averaged current density being 233 A m−2 for 1.5 s using the shot extraction gap length. The low of 0.31 can be maintained by using high discharge power. The various parameters mentioned above are defined in detail below

    Extension of high power deuterium operation of negative ion based neutral beam injector in the large helical device

    Get PDF
    Second deuterium operation of the negative ion based neutral beam injector was performed in 2018 in the large helical device. The electron and ion current ratio improves to Ie/Iacc(D) = 0.31 using the short extraction gap distance of 7 mm between the plasma grid (PG) and the extraction grid (EG). The strength of the magnetic field by the electron deflection magnet installed in the EG increases by 17% at the PG ingress surface, which effectively reduces the electron component in the negative ion rich plasma in the vicinity of PG apertures. The reduction of the electron current made it possible to operate at a high power arc discharge and beam extraction. Then, the deuterium negative ion current increases to 55.4 A with the averaged current density of 233 A/m2. The thermal load on the EG using 7 mm gap distance is 0.6 times smaller than the thermal load using a 8 mm gap caused by the reduction of coextracted electron current. The injection beam power increases to 2.9 MW in the beam line BL3, and the total beam injection power increases to 7 MW by three beam lines in the second deuterium campaign

    Upgraded millimeter-wave interferometer for measuring the electron density during the beam extraction in the negative ion source

    Get PDF
    The upgraded millimeter-wave interferometer with the frequency of 70 GHz is installed on a large-scaled negative ion source. Measurable line-averaged electron density is from 2×1015to 3×1018m−3in front of the plasma grid. Several improvements such as the change to shorter wavelength probing with low noise, the installation of special ordered horn antenna, the signal modulation for a high accuracy digital phase detection, the insertion of insulator, and so on, are carried out for the measurement during the beam extraction by applying high voltage. The line-averaged electron density is successfully measured and it is found that it increases linearly with the arc power and drops suddenly at the beam extraction

    Installation of Spectrally Selective Imaging System in RF Negative Ion Source

    Get PDF
    A spectrally selective imaging system has been installed in the RF negative ion source in the International Thermonuclear Experimental Reactor-relevant negative ion beam test facility ELISE (Extraction from a Large Ion Source Experiment) to investigate distribution of hydrogen Balmer-α emission (Hα) close to the production surface of hydrogen negative ion. We selected a GigE vision camera coupled with an optical band-path filter, which can be controlled remotely using high speed network connection. A distribution of Hα emission near the bias plate has been clearly observed. The same time trend on Hα intensities measured by the imaging diagnostic and the optical emission spectroscopy is confirmed

    Extension of operational regime in high-temperature plasmas and effect of ECRH on ion thermal transport in the LHD

    Get PDF
    A simultaneous high ion temperature (Ti) and high electron temperature (Te) regime was successfully extended due to an optimized heating scenario in the LHD. Such high-temperature plasmas were realized by the simultaneous formation of an electron internal transport barrier (ITB) and an ion ITB by the combination of high power NBI and ECRH. Although the ion thermal confinement was degraded in the plasma core with an increase of Te/Ti by the on-axis ECRH, it was found that the ion thermal confinement was improved at the plasma edge. The normalized ion thermal diffusivity χi/Ti1.5{{\chi}_{\text{i}}}/T_{\text{i}}^{1.5} at the plasma edge was reduced by 70%. The improvement of the ion thermal confinement at the edge led to an increase in Ti in the entire plasma region, even though the core transport was degraded
    corecore