525 research outputs found

    Weak and strong wave turbulence spectra for elastic thin plate

    Get PDF
    Variety of statistically steady energy spectra in elastic wave turbulence have been reported in numerical simulations, experiments, and theoretical studies. Focusing on the energy levels of the system, we have performed direct numerical simulations according to the F\"{o}ppl--von K\'{a}rm\'{a}n equation, and successfully reproduced the variability of the energy spectra by changing the magnitude of external force systematically. When the total energies in wave fields are small, the energy spectra are close to a statistically steady solution of the kinetic equation in the weak turbulence theory. On the other hand, in large-energy wave fields, another self-similar spectrum is found. Coexistence of the weakly nonlinear spectrum in large wavenumbers and the strongly nonlinear spectrum in small wavenumbers are also found in moderate energy wave fields.Comment: 5 pages, 3 figure

    Single-wavenumber Representation of Nonlinear Energy Spectrum in Elastic-Wave Turbulence of {F}\"oppl-von {K}\'arm\'an Equation: Energy Decomposition Analysis and Energy Budget

    Get PDF
    A single-wavenumber representation of nonlinear energy spectrum, i.e., stretching energy spectrum is found in elastic-wave turbulence governed by the F\"oppl-von K\'arm\'an (FvK) equation. The representation enables energy decomposition analysis in the wavenumber space, and analytical expressions of detailed energy budget in the nonlinear interactions are obtained for the first time in wave turbulence systems. We numerically solved the FvK equation and observed the following facts. Kinetic and bending energies are comparable with each other at large wavenumbers as the weak turbulence theory suggests. On the other hand, the stretching energy is larger than the bending energy at small wavenumbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode aka_{\bm{k}} and its companion mode aka_{-\bm{k}} is observed at the small wavenumbers. Energy transfer shows that the energy is input into the wave field through stretching-energy transfer at the small wavenumbers, and dissipated through the quartic part of kinetic-energy transfer at the large wavenumbers. A total-energy flux consistent with the energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.Comment: 11 pages, 4 figure

    Identification of Separation Wavenumber between Weak and Strong Turbulence Spectra for Vibrating Plate

    Get PDF
    A weakly nonlinear spectrum and a strongly nonlinear spectrum coexist in a statistically steady state of elastic wave turbulence. The analytical representation of the nonlinear frequency is obtained by evaluating the extended self-nonlinear interactions. The {\em critical\/} wavenumbers at which the nonlinear frequencies are comparable with the linear frequencies agree with the {\em separation\/} wavenumbers between the weak and strong turbulence spectra. We also confirm the validity of our analytical representation of the separation wavenumbers through comparison with the results of direct numerical simulations by changing the material parameters of a vibrating plate

    High Cost Structure in the Japanese Economy under Globalization

    Get PDF

    1000 frame/sec Stereo Matching VLSI Processor with Adaptive Window-Size Control

    Get PDF
    科研費報告書収録論文(課題番号:17300009/研究代表者:亀山充隆/システムインテグレーション理論に基づく高安全知能自動車用VLSIの最適設計
    corecore