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Single-wave-number representation of nonlinear energy spectrum in elastic-wave turbulence of the
Föppl–von Kármán equation: Energy decomposition analysis and energy budget
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A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is
found in elastic-wave turbulence governed by the Föppl–von Kármán (FvK) equation. The representation enables
energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets
in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic
energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory
suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e.,
the nonlinearity is relatively strong. The strong correlation between a mode ak and its companion mode a−k is
observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer
at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave
numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical
expression of the total-energy transfer, and the forward energy cascade is observed clearly.

DOI: 10.1103/PhysRevE.90.063004 PACS number(s): 47.27.−i, 05.45.−a, 62.30.+d, 46.40.−f

I. INTRODUCTION

Energy decomposition analysis helps understanding of the
mechanism of energy distribution. Exchange between kinetic
energy and potential energy is observed in oscillatory or wave
motion, while the total energy is conserved. The exchange
is seen as elliptic motion, which can be distorted by the
nonlinearity, in the phase space. In Refs. [1,2], the energy
is decomposed into kinetic, bending, and stretching energies
to derive the governing equation of the elastic waves.

In the relaxation, known as selective decay process, of
hydrodynamic turbulent flows, depression of nonlinearity has
been often discussed. Strong correlations between velocity and
vorticity have been reported in hydrodynamic turbulence; e.g.,
parallelization of velocity and vorticity called Beltramization
in three-dimensional flow [3], and negative temperature states
such as the sinh-Poisson state in two-dimensional flow [4].
These relaxed states have correlation among modes. This is
in contrast with the weak turbulence, where independence
among modes is presupposed. In the Majda-McLaughlin-
Tabak (MMT) model, which is a one-dimensional mathemat-
ical model of wave turbulence, spatially localized coherent
structures are reported [5]. Zakharov et al. [6] modified the
MMT model to fit the weak turbulence theory (WTT) by
introducing a nonlinear term that prevents the correlation of
modes. We will here report the correlations between each pair
of modes at large scales in elastic-wave turbulence, which is
consistent with our previous work where the separation wave
number between the weak and strong turbulence is estimated
via the applicability limit of the random phase approximation
(RPA) in WTT [7].

*yokoyama@kuaero.kyoto-u.ac.jp
†mtakaoka@mail.doshisha.ac.jp

Since the coexistence of nonweak and weak turbulence
will be investigated in this paper, we here distinguish wave
turbulence and weak turbulence: the former is referred to as a
wave turbulent state where the nonlinear interactions are not
necessarily weak, and the latter is a wave turbulent state where
WTT can be applied. Thus, wave turbulence includes weak
turbulence.

Fourier spectral representation is widely used in the
analysis of the homogeneous turbulence governed by the
Navier-Stokes equation, because one of the most important
study objectives is to clarify energy distribution formed by
hierarchical structures over a wide range of scales. The so-
called cascade theory, which was proposed by Kolmogorov [8]
as the first statistical theory of turbulence, predicts the direction
of energy transfer and is well described in the wave-number
space. Also in researches of weak turbulence systems, the
Fourier spectral representation is convenient to introduce the
complex amplitudes as elementary waves to apply the RPA in
WTT.

The analysis of the wave turbulence is confronted with
the following difficulties, which stem from the fact that only
the quadratic quantities of the complex amplitudes have been
considered as energy. More properly, the quadratic energy
corresponds to the linear part of the dynamics, and the
ensemble-averaged quadratic energy is conserved only in the
weakly nonlinear limit, even if its dynamics is governed
by a Hamiltonian. Although it is convenient to use the
complex amplitudes in application of the RPA to derive the
kinetic equation, the perturbative expansion of the complex
amplitudes is inevitable to represent the nonlinearity of the
system. The nonlinear energy appears as convolutions of
the complex amplitudes, since the complex amplitudes are
introduced for the different purpose. On the other hand, for
example, in the Navier-Stokes turbulence the energy is given
by a single-wave-number representation like |uk|2/2, and this
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kind of problem does not appear, since the energy is simply
given by the quadratic form by its nature.

To analyze energy budget, it is indispensable to take
into account the full Hamiltonian dynamics. A single-wave-
number representation of the higher-order energy is required
to identify the nonlinear dynamics at each scale. In addition
to the nonconservation of the quadratic energy, its transfer
in the wave-number space cannot be obtained as a closed
expression in the representation of the complex amplitudes.
If a single-wave-number representation of the energy can be
found, the explicit expression of the detailed energy budget is
obtained, even not in the weakly nonlinear limit.

Demanding the constancy of the energy flux and the
complete self-similarity of the solution, the dimensional
analysis using a specific form of the kinetic equation predicts
the Kolmogorov-Zakharov spectrum as described in Chap. 3
of Ref. [9]. While the spectral form can be obtained easily
in this approach, the Kolmogorov-Zakharov spectrum can be
obtained also as a stationary solution of the kinetic equation
with help from the so-called Zakharov transformation. The
energy flux in the framework of WTT can be represented
by the collision integral. Care should be taken to distinguish
WTT and the Hamiltonian dynamics, since the ensemble-
averaged quadratic energy is conserved only under the kinetic
equation. Although the quadratic-energy fluxes for a variety
of spectral parameters were numerically obtained in Ref. [10],
no total-energy flux has been obtained so far even in the
weakly nonlinear limit. We will here report that the flux of the
total energy can be directly calculated by using the analytical
expression for the transfer.

The energy flux not in the weakly nonlinear limit is difficult
to obtain. The most primitive estimation of the energy fluxP(k)
through k = |k| is obtained from the cumulative energy Ẽ(k),
the cumulative energy input F̃(k), and the cumulative energy
dissipation D̃(k) between 0 and k by using the scale-by-scale
energy budget equation P(k) = −∂ Ẽ(k)/∂t + F̃(k) − D̃(k)
[11]. The energy flux in a statistically steady state is usually
estimated by measuring the energy injected into the system
when the dissipation is localized at large wave numbers [12].
The energy flux obtained in Ref. [13],1 which is defined as
F̃(k) − D̃(k), is the same as the flux estimated only by the
energy input for the dissipation localized at the large wave
numbers. Their approaches do not contain the expression
derived from the nonlinear term of the governing equation.
The constancy in the inertial subrange of the energy flux
estimated from F̃(k) − D̃(k) is an obvious consequence from
the localization of the external force and dissipation, and the
constancy is independent of whether the nonlinear interactions
are local or not. The statistical steadiness ∂ Ẽ(k)/∂t = 0 should
be rigorously verified. Furthermore, the energy injected into
the system is not necessarily in strict accordance with the
energy flux that cascades in the inertial subrange [14]. In
laboratory experiments of surface waves, the energy flux is
estimated indirectly by the energy decay rate after switching
off the energy input or by the dissipation spectrum. This
estimation requires additional assumptions, because it is the

1One of the referees informed the authors this reference, which was
published during the reviewing process.

power spectrum of the displacement that can be obtained
experimentally [15]. The energy flux may be evaluated by
using structure functions in the real space, although it is a little
different from that defined in the wave-number space. Even
in direct numerical simulations according to dynamical equa-
tions, the energy flux consistent with the energy conservation
has not been obtained directly [16,17].

The elastic-wave turbulence, which is tractable experimen-
tally, numerically, and theoretically, exhibits rich phenomena:
weak turbulence [12,18], spatio-temporal dynamics [19],
spectral variation [7,20], and strongly nonlinear structures
[21]. Among them, the coexistence of the weakly nonlinear
spectrum and a strongly nonlinear spectrum is one of the most
remarkable properties [7,22]. It is an interesting challenge to
clarify the energy budget in the state where the weak turbulence
and the strong turbulence coexist. It should be noted here
that we use “strong” as shorthand notation to represent the
relatively strongly nonlinear state whose nonlinearity is not so
strong as to break the first-principle dynamical equations, but
sufficiently strong to break the weak nonlinearity assumption
in WTT.

In this paper, we analyze the wave turbulence in a thin elas-
tic plate by numerical simulations according to the Föppl–von
Kármán equation. The single-wave-number representation of
the nonlinear energy spectrum opens a way to resolve the above
difficulties. It enables the energy decomposition analysis and
the investigations of the energy budget due to the nonlinear in-
teractions. The next section is devoted to the formulation of the
problem, focusing on the Fourier representation of the system.
In Sec. III, two kinds of numerical results are shown. One is
the energy decomposition analysis, and the other is the energy
budget. The last section is devoted to concluding remarks.

II. FORMULATION

A. Governing equation and numerical scheme

The dynamics of elastic waves propagating in a thin plate
is described by the Föppl–von Kármán (FvK) equation for
the displacement ζ and the momentum p via the Airy stress
potential χ [1,2]. Under the periodic boundary condition, the
FvK equation is written as

dζk

dt
= pk

ρ
,

dpk

dt
= −ρω2

kζk +
∑

k1+k2=k

|k1 × k2|2ζk1χk2 ,

(1a)

χk = − Y

2k4

∑
k1+k2=k

|k1 × k2|2ζk1ζk2 , (1b)

where ζk, pk, and χk are the Fourier coefficients of the
displacement, of the momentum, and of the Airy stress
potential, respectively. The Young’s modulus Y and the density
ρ are the material quantities of an elastic plate. The frequency
ωk is given by the linear dispersion relation

ωk =
√

Yh2

12(1 − σ 2)ρ
k2, (2)

where σ and h are respectively the Poisson ratio and the
thickness of the elastic plate.
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The complex amplitude is defined as

ak = ρωkζk + ipk√
2ρωk

. (3)

The complex amplitude is used as the elementary wave of the
wave number k in WTT. Then, the variables in Eq. (1) are
given as

ζk = 1√
2ρωk

(ak + a∗
−k), (4a)

pk = −i

√
ρωk

2
(ak − a∗

−k), (4b)

χk = − Y

4ρk4

∑
k1+k2=k

|k1 × k2|2√
ωk1ωk2

(
ak1 + a∗

−k1

)(
ak2 + a∗

−k2

)
,

(4c)

where a∗ represents the complex conjugate of a. Equation (1)
is reduced to a single equation for ak as

dak

dt
= − iωkak − iY

8ρ2

∑
k1+k2+k3=k

|k × k1|2|k2 × k3|2
|k2 + k3|4

×
(
ak1 + a∗

−k1

)(
ak2 + a∗

−k2

)(
ak3 + a∗

−k3

)
√

ωkωk1ωk2ωk3

. (5)

The first term in the right-hand side corresponds to the linear
harmonic oscillation, and the second one to the nonlinear
interactions.

Direct numerical simulations (DNS) according to Eq. (5)
are performed with the parameter values as ρ = 7.8 ×
103 kg/m3, Y = 2.0 × 1011 Pa, σ = 0.30, and h = 5.0 ×
10−4 m. The plate is supposed to have the periodic boundary
of 1 m × 1 m. Thus, the two-dimensional wave-number vector
k is discretized as k ∈ (2πZ)2. The pseudo-spectral method
is employed and the number of the aliasing-free modes is
512 × 512. Since the 4/2 law is required to remove the aliasing
errors in the third-order nonlinearity, we use 1024 × 1024
mode in the calculation of the convolutions.

The external force Fk and the dissipation Dk are added
to the right-hand side of Eq. (5) to make statistically steady
nonequilibrium states. The external force Fk is added so that
ak’s at the small wave numbers |k| � 8π have a magnitude
constant in time, while the phases of ak’s are determined by
Eq. (5). The dissipation is added as Dk = −ν|k|8ak, where ν =
1.21 × 10−22. As we can recognize from Figs. 1 and 3, which
appear below, the dissipation is effective in the wave-number
range |k| � 256π . The exponential decay of the energy spectra
shown in Fig. 1 at the large wave numbers gives the assurance
of our DNS with this mode number. Details of the numerical
scheme are explained in Ref. [22].

It is preferable for the external force and the dissipation
to be localized in scales to achieve a large inertial subrange
of turbulence spectra. Although it is reported that broadly
affecting Lorentzian dissipation successfully reproduces the
experimentally observed spectrum [21], we are interested in
the properties in the inertial subrange in the FvK turbulence.
According to the derivation of the equation, it might be realized
and examined in a laboratory experiment, if one could perform
the experiment in a vacuum environment to reduce drags acting
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FIG. 1. (Color online) Spectra of the total energy E , of the
quadratic energy E (2), of the kinetic energy K, of the potential energy
V , of the bending energy Vb, of and the stretching energy Vs.

on the thin plate, e.g., induced mass, by using a much less
dissipative plate to reduce its internal friction.

B. Hamiltonian and energy decomposition

The FvK equation (1) can be written as a canonical
equation:

dζk

dt
= δH

δp∗
k

,
dpk

dt
= − δH

δζ ∗
k

,

when we introduce the Hamiltonian H as

H =
∑

k

(
1

2ρ
|pk|2 + ρω2

k

2
|ζk|2

)

+ Y

8

∑
k+k1−k2−k3=0

|k × k1|2|k2 × k3|2
|k2 + k3|4 ζ ∗

k ζ ∗
k1

ζk2ζk3 , (6)

where δ/δζ ∗
k and δ/δp∗

k express the functional derivatives with
respect to ζ ∗

k and p∗
k, respectively. Use has been made of ζk =

ζ ∗
−k to rewrite the second term in the right-hand side into

the symmetric form. Note that ζk (pk) and ζ ∗
k (p∗

k) are not
independent of each other. The relation to the conventional
representation with the complex amplitudes in WTT is given
in the Appendix.

The Hamiltonian consists of three kinds of energies, i.e.,
the kinetic energy, the bending energy, and the stretching
energy [2]. The bending energy derives from the out-of-plane
displacement, while the stretching energy comes from the
in-plane strain.

The total energy of each mode Ek is the sum of the kinetic
energy Kk and the potential energy Vk, i.e., Ek = Kk + Vk.
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The potential energy of each mode is the sum of the bending
energy Vbk and the stretching energy Vsk, i.e., Vk = Vbk + Vsk.
Here,

Kk = 1

2ρ
|pk|2 = ωk

4
(|ak|2 + |a−k|2 − 2Re(aka−k)), (7a)

Vbk = ρω2
k

2
|ζk|2 = ωk

4
(|ak|2 + |a−k|2 + 2Re(aka−k)), (7b)

Vsk = k4

2Y
|χk|2 = Y

32ρ2k4

∑
k1 + k2 = k
k3 + k4 = k

|k1 × k2|2|k3 × k4|2√
ωk1ωk2ωk3ωk4

×(
a∗

k1
+ a−k1

)(
a∗

k2
+ a−k2

)(
ak3 + a∗

−k3

)(
ak4 + a∗

−k4

)
.

(7c)

The quadratic energy of each mode is given as the sum of
the kinetic energy and the bending energy, i.e., E

(2)
k = Kk +

Vbk, because both energies are O(|a|2). On the other hand,
the quartic energy E

(4)
k is the stretching energy Vsk, which is

O(|a|4). The Hamiltonian (6) can also be written in terms of
these energies as

H =
∑

k

Ek =
∑

k

(
E

(2)
k + E

(4)
k

) =
∑

k

(Kk + Vbk + Vsk).

(8)

It should be emphasized that usage of the Fourier coefficient
of the Airy stress potential χk, given as Eq. (1b), enables
the representation of the nonlinear energy for a single-wave-
number mode as Eq. (7c) in this system. The complex
amplitude ak is introduced as the elementary wave in WTT.
When the system’s Hamiltonian is expanded in terms of ak,
it leads to the nonlinear energy in the form of a convolution
consisting of the four wave numbers as shown in Eq. (7c).
We here consider ζk, pk, and χk as elementary waves in the
representation of the energies, Kk, Vbk, and Vsk.

In the framework of WTT, the energy of k is defined as the
quadratic energy: EWTT

k = ωk〈|ak|2〉, where 〈·〉 denotes the en-
semble averaging. The quadratic energy in our notation and the
energy in WTT are related as 〈E(2)

k 〉 = 〈Kk + Vbk〉 = EWTT
k +

EWTT
−k . The energy in WTT,

∑
k EWTT

k , is not conserved under
the FvK equation regardless of the ensemble averaging, since
it lacks the stretching energy Vsk in the Hamiltonian (8), i.e.,∑

k EWTT
k = ∑

k〈E(2)
k 〉 = 〈H2〉 �= H, whereH2 represents the

quadratic part of the Hamiltonian. It should be noted that EWTT
−k

is independent of EWTT
k , but E

(2)
k = E

(2)
−k as well as Ek = E−k,

because E
(2)
k and Ek are given by the Fourier coefficients of

the real-valued functions.

III. RESULTS

We will show the numerical results for the moderate energy
level, which corresponds to EL3 in Ref. [7]. This energy level
is chosen so as to realize the coexistence of the weak and
strong energy spectra. The numbers of the modes are twice
those in Ref. [7] in each direction to obtain larger inertial
subrange. The FvK equation is applicable for this energy
level, because the root mean square of the gradient of the
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FIG. 2. (Color online) Correlation between ak and a−k. (k =
(kx,0) and kx ∈ [10π,256π ].)

displacement 〈|∇ζ |2〉1/2 ≈ 0.15.2 Furthermore, this energy
level looks intermediate between the two fields reported in
Fig. 2 of Ref. [21], i.e., much smaller than the energy level at
which the dynamic crumpling appears.

A. Decomposed energy spectra and correlation between
companion modes

The azimuthally integrated energy spectra of the total
energy E(k), the quadratic energy E (2)(k), the kinetic energy
K(k), the potential energy V(k), the bending energy Vb(k),
and the stretching energy Vs(k) are shown in Fig. 1. The az-
imuthally integrated spectrum of the total energy, for example,
is defined as E(k) = (�k)−1 ∑

k−�k/2�|k′|<k+�k/2〈Ek′ 〉, where
�k is the width of the bins to make the azimuthal integration.3

(See also Appendix in Ref. [7].) Note that the azimuthally
integrated spectrum of the energy in WTT is equal to that of
the quadratic energy, i.e., EWTT(k) = E (2)(k), because of the
statistical isotropy.

In Ref. [22], the quadratic energy E (2)(k) was examined
to compare with WTT, and the coexistence of the weakly and
strongly nonlinear energy spectra was found. It was also found
that the coexistence in E (2)(k) results from the coexistence
in the kinetic energy K(k) [7]. The coexistence is observed
also in Fig. 1: the weakly nonlinear spectrum E (2)(k) ∝ k in
the large wave numbers, and a strongly nonlinear spectrum
E (2)(k) ∝ k−1/3 in the small wave numbers. The weakly
nonlinear spectrum is a stationary solution of the kinetic
equation [18]. The strongly nonlinear spectrum is shallower
than that observed in Ref. [21]. The difference between the
strongly nonlinear spectra should be caused by the difference
between the external forces and between the dissipations. The

2The average is performed over 1024 × 4 × 5122 points: 1024
independent realizations, 4 different times at an interval sufficiently
longer than the longest linear period, and 5122 grid points.

3The spectra are obtained by averaging over 4096 = 1024 × 4
fields: 1024 independent realizations which are started from different
initial conditions, and 4 different times at an interval sufficiently
longer than the longest linear period.
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flexion of K(k) is in contrast with the monotonic increase of
the bending energy Vb(k). As explained below, this is due to
an opposite effect of the strong correlation between the pairs
of modes caused by the nonlinear term.

At the large wave numbers, the kinetic and bending
energies, K(k) and Vb(k), are comparable with each other. This
corresponds to the fact that the average of the kinetic energy
is equal to that of the potential energy in linear harmonic
waves. Because the quartic energy Vs(k) is much smaller than
the quadratic energy E (2)(k), the weak nonlinearity and the
randomness of the phases at the large wave numbers are
confirmed. (See the blue long-dashed curve and the brown
short-dashed curve in Fig. 1.) Therefore, WTT works well in
this wave-number range.

At the small wave numbers, in contrast, Vs(k) is larger than
Vb(k). Therefore, the nonlinearity is relatively strong there.
(In this paper, we simply refer to it as strong nonlinearity.)
The kinetic energy K(k) accounts for most of the total energy
E(k), and E (2)(k) is larger than Vs(k) even at these small
wave numbers. The nonsmallness of Vs(k) at the small wave
numbers, especially at k � 8π , stems from the nonlocality of
the nonlinear term in the wave-number space, as is known from
the fact that Vs(k) is obtained via the convolution (7c). The
kinetic energy, furthermore, is closely related to the stretching
energy via the energy transfer as shown in the next subsection.

The deviation of the kinetic energy K(k) from the bending
energy Vb(k) at the small wave numbers comes from the term
Re(aka−k), which is found as the difference between Eqs. (7a)
and (7b). The correlation of the complex amplitudes between
the companion modes, ak and a−k, is defined as

CCk = 〈aka−k〉√
〈|ak|2〉〈|a−k|2〉

. (9)

The independence between the complex amplitudes at the
first order, i.e., 〈akak′ 〉 = 0, is required by the RPA in WTT.
Similarly, the correlations of the real and imaginary parts of
the companion modes are defined as

CRk = 〈Re(ak)Re(a−k)〉√
〈(Re(ak))2〉〈(Re(a−k))2〉 , (10a)

CIk = 〈Im(ak)Im(a−k)〉√
〈(Im(ak))2〉〈(Im(a−k))2〉 . (10b)

In Fig. 2, the correlations between companion modes at k =
(kx,0) and −k = (−kx,0), i.e., CC(kx ,0), CR(kx ,0), and CI(kx ,0)

are drawn in the range kx ∈ [10π,256π ] to avoid the influence
from the artificially added external force and dissipation.

At the large wave numbers, where the nonlinearity is weak,
the correlations, CCk, CRk, and CIk, are almost zero. This is
consistent with the RPA. At the small wave numbers, where
the nonlinearity is relatively strong, CCk ≈ −1, CRk ≈ −1,
and CIk ≈ 1. This indicates ak ≈ −a∗

−k, which is confirmed by
the time series of ak and a−k, although the graphs are omitted
here. This fact is consistent with the results in Ref. [7], where
it is shown that the separation wave number which forms the
division between the weakly and strongly nonlinear spectra
agrees with the critical wave number at which the nonlinear
frequency shift is comparable with the linear frequency.
Namely, it means that the RPA, which is the basis of WTT,

becomes inapplicable below the vicinity of the separation wave
number.

In all the wave numbers, Re(CCk) ≈ CRk ≈ −CIk. The
curve for Re(CCk) is smoother than CRk and CIk, since the for-
mer consists of the latter two elements, i.e., twice the ensemble
number. If we decrease the amplitude of the external force, the
range of the wave numbers where WTT holds becomes larger.
This is consistent with the results in Ref. [19]. The weak
nonlinearity, which results in 〈akak′ 〉 = 0, at the large wave
numbers and the strongly nonlinear correlation ak ≈ −a∗

−k at
the small wave numbers make Im(CCk) ≈ 0 over all the wave
numbers.

The strong correlation ak ≈ −a∗
−k at the small wave

numbers appears asK(k) � Vb(k) in Fig. 1, which is consistent
with Eqs. (7a) and (7b). Because of Eq. (4a), this correlation
makes ζk small. It leads to depression of the summand in the
nonlinear term [see Eq. (5)], which reminds us of the depres-
sion in the relaxation processes [3,4] as written in the Intro-
duction. It seems that this kind of correlated state will survive,
in contrast with the fast cascade of the uncorrelated modes.

One might think that this correlation, ak ≈ −a∗
−k, contra-

dicts the strong nonlinearity at the small wave numbers, since
it appears to suppress the nonlinear term, the second term in
the right-hand side of Eq. (5). The nonlinearity can be large
at the small wave numbers owing to the convolution, which is
the summation of the products of (ak1 + a∗

−k1
), (ak2 + a∗

−k2
),

and (ak3 + a∗
−k3

) at all wave numbers, because (aki
+ a∗

−ki
)

for ki (i = 1,2,3) at the large wave numbers are not small.
Namely, the nonlinearity at a wave number is not determined
only by the elementary wave at the wave number. This fact is
also confirmed in Fig. 1. While the amplitudes of the linear
energies, E (2), K, and Vb, decay at the small wave numbers,
those including the nonlinear energy, E , V , and Vs, do not and
are almost constant k � 8π .

B. Energy budget

To investigate the energy budget in detail, our analysis here
starts with energy transfer. We define the energy transfer of k
as Tk = d̂Ek/d̂t , where the operator d̂/d̂t expresses the time
derivative neglecting the external force and the dissipation.
According to the energy decomposition in Sec. II, the total-
energy transfer is also decomposed as

Tk = d̂Kk

d̂t
+ d̂Vbk

d̂t
+ d̂Vsk

d̂t
= TKk + TVb k + TVs k. (11)

Corresponding to the linear and nonlinear terms in dpk/dt , the
transfer of the kinetic energy TKk consists of the quadratic and
quartic parts, T (2)

Kk and T
(4)
Kk, i.e., TKk = d̂Kk/d̂t = T

(2)
Kk + T

(4)
Kk.

From Eqs. (1) and (7),

T
(2)
Kk = −ω2

k

2
p∗

kζk + c.c., (12a)

T
(4)
Kk = p∗

k

2ρ

∑
k1+k2=k

|k1 × k2|2ζk1χk2 + c.c., (12b)

TVb k = d̂Vbk

d̂t
= ω2

k

2
p∗

kζk + c.c., (12c)

TVs k = d̂Vsk

d̂t
= −χ∗

k

2ρ

∑
k1+k2=k

|k1 × k2|2pk1ζk2 + c.c. (12d)
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Although the kinetic energy is represented as a quadratic
function of the complex amplitude, its transfer has both the
quadratic part T

(2)
Kk and the quartic part T

(4)
Kk. While the transfer

of the bending energy TVb k is a quadratic function of the
complex amplitude, that of the stretching energy TVs k is a
quartic function.

Apparently, T
(2)
Kk and TVb k cancel each other, representing

the harmonic exchange between the kinetic and bending
energies for a wave number. Thus, the quadratic parts of the
transfer do not contribute to the cascade between different
scales. In this sense, to be exact, T

(2)
Kk and TVb k are not

transfers but transmutations from one form of the energy to
the other. Nonetheless, we naively use the word “transfers”
both for transfers and for transmutations. The quartic-energy
transfers, T

(4)
Kk and TVs k, are the energy transfers due to the

nonlinear interactions among modes in the wave-number space
as known from Eqs. (12b) and (12d). They are of the same
quartic order of the complex amplitude. However, only T

(4)
Kk

has been taken into account for the energy transfer in WTT
as T WTT

k = d̂EWTT
k /d̂t , because it comes from the quadratic

energy. Namely, T WTT
k + T WTT

−k = 〈TKk + TVb k〉 = 〈T (4)
Kk〉.

It should be emphasized that energy conservation holds
only for the total energy, which is the sum of the kinetic,
bending, and stretching energies, but each decomposed energy
is not conserved separately. Namely,

∑
k Tk = 0, but

∑
k T

(2)
Kk,∑

k T
(4)
Kk,

∑
k TVb k,

∑
k TVs k �= 0. Moreover,

∑
k T WTT

k �= 0.
We here further decompose the quartic-energy transfers.

Let us introduce the triad interaction functions corresponding
to Eqs. (12b) and (12d) as

T
(4)
Kkk1 k2

= |k1 × k2|2
2ρ

pk(ζk1χk2 + χk1ζk2 )δk+k1+k2,0

+ c.c., (13a)

TVs kk1 k2 = −|k1 × k2|2
2ρ

χk(pk1ζk2 + ζk1pk2 )δk+k1+k2,0

+ c.c., (13b)

which represent the transfer of each energy to k due to a
triad with one leg k1 and the other k2. To symmetrize the
triad interaction functions and to make the triad in the form
k + k1 + k2 = 0, we use ζk = ζ ∗

−k, pk = p∗
−k and χk = χ∗

−k.
Then, the quartic-energy transfers can be represented as the
sum of these terms:

T
(4)
Kk =

∑
k1,k2

T
(4)
Kkk1 k2

, TVs k =
∑
k1,k2

TVs kk1 k2 . (14)

The triad interaction function of the total energy is defined
as Tkk1 k2 = T

(4)
Kkk1 k2

+ TVs kk1 k2 . The triad interaction function
Tkk1 k2 is interpreted as the temporal rate of the energy
increment at k due to the interaction among the three wave
numbers k + k1 + k2 = 0. The triad interaction function of
the total energy satisfies the detailed energy balance

Tkk1 k2 + Tk1 k2 k + Tk2 kk1 = 0. (15)

Namely, the triad interaction function shows the interchanges
of the energy among wave numbers keeping the sum of the
energies of the three wave numbers.

The triad interaction functions have high symmetries. If we
define the triad interaction functions in a piecewise way as

T̃
(4)
Kkk1 k2

= |k1 × k2|2
2ρ

pkζk1χk2δk+k1+k2,0, (16a)

T̃Vs kk1 k2 = −|k1 × k2|2
2ρ

χkpk1ζk2δk+k1+k2,0, (16b)

then another detailed energy balance holds:

T̃
(4)
Kkk1 k2

+ T̃Vs k2 kk1 = 0. (17)

This represents that the gain of the kinetic energy at k and that
of the stretching energy at k2 have the same absolute value
with opposite signs through the triad interaction atomized as
Eqs. (16). It indicates the exchange between the kinetic energy
and the stretching energy through the triad interaction. The
atomized triad interaction function of the total energy is then
defined as

T̃kk1 k2 = T̃
(4)
Kkk1 k2

+ T̃Vs kk1 k2 , (18)

and the detailed energy balance that is the same as Eq. (15)
holds also for T̃kk1 k2 .

The detailed energy balances hold via the triad interaction
functions among the Fourier coefficients of the physical
variables, ζk, pk, and χk. This suggests that the present repre-
sentation by using these Fourier coefficients is suitable for the
analysis of energy budget. Since χk is given by the convolution
as defined in Eq. (1b), it is consistent with the fact that
the nonlinear interactions occur among four waves when the
complex amplitudes are used for the governing equation (5).

The azimuthally integrated energy transfers, which are de-
fined in a way similar to the energy spectra, are drawn in Fig. 3.
The azimuthallyintegrated energy transfer T (k), for example,
is defined as T (k) = (�k)−1 ∑

k−�k/2�|k′|<k+�k/2〈Tk′ 〉. The
area between the solid red curve and the zero line at the
small wave numbers equals that at the large wave numbers,
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FIG. 3. (Color online) Transfers of the total energy, of the
quadratic and quartic parts of the kinetic energy, and of the bending
and stretching energies. The inset shows the enlargement at the large
wave numbers.
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which is enlarged in the inset. This is consistent with energy
conservation. The much larger amplitude of T (k) at the small
wave numbers than at the large wave numbers results from the
logarithmically scaled horizontal axis. The dissipation scale
can be estimated roughly as k ≈ 103, since the total-energy
transfer T becomes large and positive in the wave numbers
256π � k � 512π . It is also consistent with the exponential
decay of the energy spectra in Fig. 1.

Because the quadratic transfers, or transmutations, can
be rewritten as T

(2)
Kk = −TVb k = −ω2

kIm(aka−k), the result
Im(CCk) ≈ 0 shown in Fig. 2 is equivalent to the fact that
both T (2)

K (k) and TVb (k) are almost 0 over all the wave
numbers. Namely, the relatively large values of T (2)

K (k) and
TVb (k) observed at the large wave numbers are caused by the
statistical fluctuations, and they will diminish as the number
of realizations increases.

Energy is transferred among wave numbers by the quartic
parts, i.e., T (4)

K (k) and TVs (k). Note that T WTT(k) = T (4)
K (k). At

the small wave numbers the transfer of the stretching energy
TVs (k) is dominant in that of the total energy T (k), and is
negative. In this region, the energy excited by the external force
is carried to the inertial subrange by TVs (k). In the statistically
steady state, the negative energy transfer is canceled by the
input due to the external force. All the energy transfers are close
to 0 in the inertial subrange. On the other hand, at the large
wave numbers, the quartic-energy transfer of the kinetic energy
T (4)

K (k) accounts for most of T (k), and is positive. The positive
energy transfer is canceled by the output due to the dissipation.
Namely, the wave field receives energies as the stretching
energy from the external force, the kinetic energy, and the
stretching energy are transferred to the small scales, and the
wave field dissipates energies through the kinetic energy.

The conservation of the total energy leads to the continuity
of energy in the wave-number space:

d̂Ek

d̂t
+ ∇k · P k = Tk + ∇k · P k = 0. (19)

Here, P k is the two-dimensional flux of the total energy, and
∇k· is the divergence operator in the wave-number space. The
locality of the energy cascade due to the nonlinear interactions
is assumed. In the statistically isotropic system, the continuity
equation of energy is given by the azimuthal integration of
Eq. (19) as

T (k) + ∂P(k)

∂k
= 0. (20)

Then, the total-energy flux P(k) can be represented by using
the total-energy transfer and has the indefiniteness of constants
of the integration. When we set the flux to be 0 at the smallest
wave number, the flux is defined as

P(k) ≡ −
∫ k

0
T (k′)dk′. (21)

Energy conservation guarantees P(∞) = 0, which allows us
to rewrite the flux as P(k) = ∫ ∞

k
T (k′)dk′.

On the other hand, the flux of the quadratic energy is simply
defined in terms of T WTT as

PWTT(k) ≡ −
∫ k

0
T WTT(k′)dk′.

However, this quantity does not represent the flux of the
quadratic energy, since the quadratic energy is not conserved.
Because the flux of the quadratic energy is ill-defined, we
here refer to it as “pseudo-flux” of the quadratic energy. The
nonconservation of the quadratic energy results in PWTT(k) �=∫ ∞
k

T WTT(k′)dk′, and PWTT(0) and PWTT(∞) cannot both be
0 at the same time.

In WTT, the quadratic energy is conserved under the kinetic
equation. Therefore, PWTT is physically meaningful only in
the weakly nonlinear limit. However, this can be extended to
neither the finite nonlinearity nor Hamiltonian systems which
generally consist of both resonant and nonresonant terms. In
the earlier studies, nonetheless, PWTT has been considered as
the energy flux in weak turbulence, while, in fact, only the
total-energy flux P is physically meaningful.

The pseudo-flux of the quadratic energy in WTT is equal
to the quartic part of the pseudo-flux of the kinetic energy. To
break the energy flux P into elements, we forcibly define the
pseudo-fluxes of the decomposed energies in Eq. (12) as

Pi(k) ≡ −
∫ k

0
Ti(k

′)dk′,

similarly to PWTT. It is cautioned again that we cannot expect
the conservation of the decomposed energies, and the above
definition is merely an expedience for comparison with the
earlier studies.

The total-energy flux and these pseudo-fluxes are drawn
in Fig. 4. The total-energy flux P is 0 at the maximal wave
number, while the pseudo-fluxes are not 0 there. The non-zero
value of PWTT = P (4)

K at the maximal wave number results
from the nonconservation of the quadratic energy, and it was
observed also in the MMT model [16]. Furthermore, the value
of PWTT = P (4)

K in the inertial subrange seems to be slightly
negative, which is opposite to that of the true energy flux P ,
although, of course, its sign as well as its value depends on the
boundary condition for PWTT.
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FIG. 4. (Color online) Flux of the total energy, and pseudo-fluxes
of the quadratic and quartic parts of the kinetic energy, and of the
bending and stretching energies.
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The weakly nonlinear spectrum and the strongly nonlinear
spectrum are respectively observed at the large wave numbers
and at the small wave numbers in Fig. 1. In spite of the
coexistence of the weakly and strongly nonlinear regimes, the
total-energy flux P is almost constant in the inertial subrange
by definition in the statistically steady state. The total-energy
flux that is constant and positive in the inertial subrange
indicates the forward energy cascade. One may naively predict
that the energy flux P changes according the flexion of E(k)
or at the intersection of Vb(k) and Vs(k) in Fig. 1. Moreover,
one might expect that the large energy flux and the small
energy flux are respectively observed at the strongly nonlinear
small wave numbers and at the weakly nonlinear large wave
numbers. However, in fact, the energy flux in the statistically
steady state is constant in the inertial subrange, where neither
the external force nor the dissipation affects it.

IV. CONCLUDING REMARKS

In this paper, the energy is decomposed into the kinetic,
bending, and stretching energies in the elastic-wave turbulence
governed by the Föppl–von Kármán (FvK) equation. The
Fourier coefficient of the Airy stress potential appropriately
gives the nonlinear energy, i.e., the stretching energy, for
a single wave number in the elastic waves. The complex
amplitude ak has been introduced as an elementary wave to
apply the random phase approximation in researches of weak
turbulence. In fact, ak has clear physical meaning in analogy
with the wave action, and gives the sophisticated formalism
in the weak turbulence theory (WTT). However, the use of
the Fourier coefficients of physical variables, ζk, pk, and χk,
is natural for evaluation of energy, since the nonlinear energy
expressed by ak is given by the convolution.

By the energy decomposition analysis, it was found that
the kinetic energy and the stretching energy are much larger
than the bending energy in the (relatively) strongly nonlinear
regime, while the bending energy comparable with the kinetic
energy is much larger than the stretching energy in the weakly
nonlinear regime. The imbalance between the kinetic and
bending energies results from the strong correlation between
ak and a−k. In fact, ak ≈ −a∗

−k in the strongly nonlinear
regime. Although one may expect a distinctive structure in the
real space due to this correlation, it is not so easy to identify it
because of the cumulative effect of all active modes. Namely,
the summation of all active modes including phase correlation
makes the real-space structure. It is our future work to clarify
such properties.

The so-called S theory is developed to explain the strong
pairing between ak and a−k in the spin waves under strong
parametric excitation [23]. In this case, the interactions among
pairs are more essential than those among elementary waves.
The external force in the present study is not parametric,
although the pairing plays an important role in the strongly
nonlinear regime. Independently of the S theory, the pairing
itself might be essential for the energy budget, because
the nonlinear terms appear as (ak + a∗

−k) in the governing
equation.

As a result of the single-wave-number representation
of the nonlinear energy, we have succeeded in obtain-
ing the analytical expression of the energy budget in the

elastic-wave-turbulence system. The quadratic-energy trans-
fers, which are the quadratic part of the kinetic-energy transfer
and the bending-energy transfer, transmute the energies for
a wave number. Since the quartic part of the kinetic-energy
transfer and the stretching-energy transfer are of the same
quartic order as the complex amplitude, both energy transfers
should not be discriminated even in the weakly nonlinear limit.
The analytical expression of the energy budget shows that
the total-energy transfer, which is sum of the quartic-energy
transfers, satisfies the detailed energy balance. These facts
indicate that the stretching energy is as essential as the kinetic
energy in considering the energy budget, although the order of
the stretching energy [O(|a|4)] is higher than that of the kinetic
energy [O(|a|2)] in the complex-amplitude representation. It
was numerically found in the present system that the energy is
input into the system through the stretching-energy transfer at
small wave numbers, and dissipated through the quartic part
of the kinetic-energy transfer at large wave numbers.

The energy transfer is defined as the rate of change
of the energy, and it holds independently from the total-
energy conservation. On the other hand, the energy flux is
defined based on the continuity equation of energy. Therefore,
while the decomposed-energy transfer can reflect the energy
budget, the decomposed-energy flux cannot. It follows that
only the total-energy flux is the actual flux. It is indispensable
to include the nonlinear energy properly to satisfy energy
conservation and to obtain the total-energy flux. In order
to compare with previous researches, we introduced and
examined the pseudo-fluxes as well, although they are not
actual but spurious, since the conservation of energy on which
the fluxes rely does not hold for each decomposed energy.

We have succeeded in evaluating the well-defined total-
energy flux directly by using the analytical expression of the
total-energy transfer due to the nonlinear interactions. The
total-energy flux evaluated by the nonlinear terms is positively
constant in the inertial subrange, and it indicates the forward
energy cascade. The fluxes of the quadratic energies reported
in various wave-turbulence systems [16,17] have physical
meaning only in the weakly nonlinear limit. Because the
external force used in Ref. [13] directly excites only the
linear energy, which is the kinetic energy, the expression of
the cumulative energy input F̃(k) is indistinguishable from
the one where the nonlinear energy is not considered. This
approach conceals the energy budget in the inertial subrange,
and loses the distinction between the quadratic and quartic
energies. For a general external force that may excite the
nonlinear energy directly, the stretching-energy transfer should
be taken into account, as pointed out above in the present paper.
Note that F̃(k) − D̃(k), which is used as a total-energy flux
in the same reference [13], is always constant in the inertial
subrange when both the external force and the dissipation are
localized in the wave-number space, and hence the energy
cascade cannot be examined by such flux. The analytical
expression of the energy flux obtained from the nonlinear
terms in the governing equation is necessary to investigate
the wave-turbulence statistics in the inertial subrange.

Although one may expect to evaluate the energy flux
by using the expression based on the two-point structure
functions in the real space, as is usually done in analyses
of hydrodynamic turbulence, it may be difficult to evaluate
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those for the nonlinear energy in wave systems. This is
because the nonlinearity in such systems appears as the
higher-order expansion of the complex amplitudes, in contrast
with the success of the Kármán-Howarth relation in the
Navier-Stokes turbulence where the total energy is represented
in the quadratic form. One might be able to find alternative
ways to go beyond in this direction by introducing adequate
modes of physical quantities.

It is of interest that the total-energy fluxes are nearly equal
in both weak and strong turbulence regimes while the two
regimes coexist in the inertial subrange. This may show another
mechanism than those considered in the critical balance, e.g.,
turning of the energy transfer in quasi-geostrophic turbulence,
since the present system is statistically isotropic in contrast
with those where the critical balance is predicted [24].
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APPENDIX: HAMILTONIAN STRUCTURE EXPRESSED IN
TERMS OF COMPLEX AMPLITUDE

The complex amplitude ak introduced in Eq. (3) plays a
role as a canonical variable,

i
dak

dt
= δH

δa∗
k

,

because the Hamiltonian can be rewritten in terms of the
complex amplitude as

H =
∑

k

ωk|ak|2 +
∑

k+k1−k2−k3=0

W
kk1
k2 k3

akak1a
∗
k2

a∗
k3

+
∑

k−k1−k2−k3=0

(
Gk

k1 k2 k3
aka

∗
k1

a∗
k2

a∗
k3

+ c.c.
)

+
∑

k+k1+k2+k3=0

(
Rkk1 k2 k3akak1ak2ak3 + c.c.

)
. (A1)

The second, third, and fourth terms respectively show the 2 ↔
2, 1 ↔ 3, and 0 ↔ 4 interactions of the four-wave interactions,
and W

kk1
k2 k3

(= W
k2 k3∗
kk1

), Gk
k1 k2 k3

, and Rkk1 k2 k3 are the matrix
elements of the interactions. Note that the interactions include
both resonant and non-resonant interactions. Only under the
kinetic equation of WTT, where only the resonant terms are
retained, is the quadratic energy conserved.

The third and fourth terms of the Hamiltonian (A1) are
rarely taken into account in the literature [9], because these
terms can often be reduced by a canonical transformation in the
weak turbulence regime of most wave-turbulence systems [25].
In the elastic-wave turbulence, the fourth term can be reduced,
but the third term cannot be as known from the linear dispersion
relation (2), which allows the 1 ↔ 3 resonant interactions. The
1 ↔ 3 interactions of the Hamiltonian results in the 1 ↔ 3
resonant interactions in the kinetic equation. This indicates
that the wave action is not conserved even according to its
kinetic equation in WTT. The existence of the 1 ↔ 3 resonant
interactions is one of the distinctive feature of the present
system [18].
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