27 research outputs found

    Thermal Conductivity in the Bose-Einstein Condensed State of Triplons in the Bond-Alternating Spin-Chain System Pb2V3O9

    Full text link
    In order to clarify the origin of the enhancement of the thermal conductivity in the Bose-Einstein Condensed (BEC) state of field-induced triplons, we have measured the thermal conductivity along the [101] direction parallel to spin-chains, kappa[101]kappa_{\|[101]}, and perpendicular to spin-chains, kappa[101]kappa_{\perp[101]}, of the S=1/2 bond-alternating spin-chain system Pb2V3O9 in magnetic fields up to 14 T. With increasing field at 3 K, it has been found that both kappa[101]kappa_{\|[101]} and kappa[101]kappa_{\perp[101]} are suppressed in the gapped normal state in low fields. In the BEC state of field-induced triplons in high fields, on the other hand, kappa[101]kappa_{\|[101]} is enhanced with increasing field, while kappa[101]kappa_{\perp[101]} is suppressed. That is, the thermal conductivity along the direction, where the magnetic interaction is strong, is markedly enhanced in the BEC state. Accordingly, our results suggest that the enhancement of kappa[101]kappa_{\|[101]} in the BEC state is caused by the enhancement of the thermal conductivity due to triplons on the basis of the two-fluid model, as in the case of the superfluid state of liquid 4He.Comment: 5 pages, 3 figure

    Electrical Steels and Their Evaluation for Automobile Motors

    Get PDF
    Achieving high efficiency and high torque is an important target in EV motors. This paper describes the effect of the magnetic properties of electrical steels used as core materials for synchronous motors with permanent magnets, which are commonly used as the EV traction motors. It was confirmed that electrical steels, which have high flux density and low iron loss properties can realize high motor efficiency and torque. When PWM excitation is considered, thinner electrical steels are advantageous to suppress increased loss due to higher harmonics. Based on these results, electrical steels having high flux densities and low iron losses at high frequencies were developed. Document type: Articl

    Electrical Steels and Their Evaluation for Automobile Motors

    No full text
    Achieving high efficiency and high torque is an important target in EV motors. This paper describes the effect of the magnetic properties of electrical steels used as core materials for synchronous motors with permanent magnets, which are commonly used as the EV traction motors. It was confirmed that electrical steels, which have high flux density and low iron loss properties can realize high motor efficiency and torque. When PWM excitation is considered, thinner electrical steels are advantageous to suppress increased loss due to higher harmonics. Based on these results, electrical steels having high flux densities and low iron losses at high frequencies were developed

    A novel range-verification method using ionoacoustic wave generated from spherical gold markers for particle-beam therapy : a simulation study

    Get PDF
    This study proposes a novel alternative range-verification method for proton beam with acoustic waves generated from spherical metal markers. When proton beam is incident on metal markers, most of the resulting pressure waves are confined in the markers because of the large difference in acoustic impedance between the metal and tissue. However, acoustic waves with frequency equal to marker's resonant frequency escape this confinement; the marker briefly acts as an acoustic transmitter. Herein, this phenomenon is exploited to measure the range of the proton beam. We test the proposed strategy in 3-D simulations, combining the dose calculations with modelling of acoustic-wave propagation. A spherical gold marker of 2.0 mm diameter was placed in water with a 60 MeV proton beam incident on it. We investigated the dependence of pressure waves on the width of beam pulse and marker position. At short beam pulse, specific high-frequency acoustic waves of 1.62 MHz originating from the marker were observed in wave simulations, whose amplitude correlated with the distance between the marker and Bragg peak. Results indicate that the Bragg peak position can be estimated by measuring the acoustic wave amplitudes from the marker, using a single detector properly designed for the resonance frequency

    Technical Note : Range verification of pulsed proton beams from fixed-field alternating gradient accelerator by means of time-of-flight measurement of ionoacoustic waves

    Get PDF
    Purpose: Ionoacoustics is one of the promising approaches to verify the beam range in proton therapy. However, the weakness of the wave signal remains a main hindrance to its application in clinics. Here we studied the potential use of a fixed-field alternating gradient accelerator (FFA), one of the accelerator candidates for future proton therapy. For such end, magnitude of the pressure wave and range accuracy achieved by the short-pulsed beam of FFA were assessed, using both simulation and experimental procedure. Methods: A 100 MeV proton beam from the FFA was applied on a water phantom, through the acrylic wall. The beam range measured by the Bragg peak (BP)-ionization chamber (BPC) was 77.6 mm, while the maximum dose at BP was estimated to be 0.35 Gy/pulse. A hydrophone was placed 20 mm downstream of the BP, and signals were amplified and stored by a digital oscilloscope, averaged, and low-pass filtered. Time-of-flight (TOF) and two relative TOF values were analyzed in order to determine the beam range. Furthermore, an acoustic wave transport simulation was conducted to estimate the amplitude of the pressure waves. Results: The range calculated when using two relative TOF was 78.16 +/- 0.01 and 78.14 +/- 0.01 mm, respectively, both values being coherent with the range measured by the BPC (the difference was 0.5-0.6 mm). In contrast, utilizing the direct TOF resulted in a range error of 1.8 mm. Fivefold and 50-fold averaging were required to suppress the range variation to below 1 mm for TOF and relative TOF measures, respectively. The simulation suggested the magnitude of pressure wave at the detector exceeded 7 Pascal. Conclusion: A submillimeter range accuracy was attained with a pulsed beam of about 21 ns from an FFA, at a clinical energy using relative TOF. To precisely quantify the range with a single TOF measurement, subsequent improvement in the measuring system is required
    corecore