18 research outputs found

    Innovative Separation Technology Utilizing Marine Bioresources: Multifaceted Development of a Chitosan-Based System Leading to Environmentally-Friendly Processes

    Get PDF
    Chitosan, known as a most typical marine biological polymer, has a fruitful capability of biocompatible gel formation. Attempts of chitosan have been made to develop it from the multifaceted viewpoint of separation technology. The physicochemical properties of chitosan containing a lot of hydroxyl groups and reactive amino groups help to build the characteristic polymer networks. The deacetylation degree of chitosan is found as the most influential factor to regulate properties of chitosan hydrogels. The antibacterial activity of the chitosan membrane is one of its notable abilities because of its practical application. The chitosan, its derivatives, and the complex formation with other substances has been used for applications in filtration and membrane separation processes. Adsorption processes based on chitosan have been also developed widely. Moreover, complex of chitosan gel helps to immobilize adsorbent particles. The chitosan membrane immobilizing Prussian-Blue for cesium ion removal from the aqueous phase is one of the leading cases. To elaborate the adsorption behavior on the chitosan immobilizing adsorbent, the isothermal equilibrium and mass transfer characteristics can be discussed. The adsorption process using chitosan-based membranes in combination with filtration in a flow process is advantageous compared with the batch process. More advanced studies of chitosan aerogel and chitosan nanofibers have been proceeded recently, especially for adapting to water purification and air filtration

    Toward Development of a Framework for Prediction System of Local-Scale Atmospheric Dispersion Based on a Coupling of LES-Database and On-Site Meteorological Observation

    No full text
    An accurate analysis of local-scale atmospheric dispersion of radioactive materials is important for safety and consequence assessments and emergency responses to accidental release from nuclear facilities. It is necessary to predict the three-dimensional distribution of the plume in consideration of turbulent effects induced by individual buildings and meteorological conditions. In this study, first, we conducted with meteorological observations by a Doppler LiDAR and simple plume release experiments by a mist-spraying system at the site of Japan Atomic Energy Agency. Then, we developed a framework for prediction system of local-scale atmospheric dispersion based on a coupling of large-eddy simulation (LES) database and on-site meteorological observation. The LES-database was also created by pre-calculating high-resolution turbulent flows in the target site at mean wind directions of class interval 10°. We provided the meteorological observed data with the LES-database in consideration of building conditions and calculated the three-dimensional distribution of the plume with a Lagrangian dispersion model. Compared to the instantaneous shots of the plume taken by a digital camera, it was shown that the mist plume transport direction was accurately simulated. It was concluded that our proposed framework for prediction system based on a coupling of LES-database and on-site meteorological observation is effective
    corecore