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Abstract 

BACKGROUND: Ultrasonication has been proposed as a promising technique for enzymatic 

transesterification. In contrast, excess ultrasonication causes an enzyme inactivation. This 

paper presents enzymatic transesterification to produce fatty acid methyl ester (FAME) from 
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rapeseed oil using Callera Trans L™ using a an original two-compartment reactor. The reactor 

was composed of a mechanically stirred compartment (ST) and ultrasound irradiation 

compartment (US). The reaction solution was recirculated between the ST and the US. The 

enzyme was only exposed by ultrasonication in the US. The reactor system has the option to 

control the direct irradiation period of ultrasonication to soluble enzyme, regulated by the 

mean residence time in the US.  

 

RESULTS: The production of FAME with ultrasound irradiation gave a final yield of 91wt% 

after 15hours. The reaction rate was enhanced up to 2-fold through the use of the 

two-compartment reactor compared with liquid lipase catalyzed transesterification without 

any ultrasound treatment. The Vmax with the ultrasound irradiation was 2.3-fold higher than 

that of the ultrasound free system, while the Km remained at almost the same level. The 

reaction rate and the conversion increased with a shorter mean residence time in the US.  

 

CONCLUSION: The excellent advantages of the two-compartment reactor were presented to 

produce biodiesel (FAME) resulting in acceleration of the enzyme reaction by ultrasound 

irradiation. Especially, reaction enhancement was maximally obtained using a separate 

compartment of the reactor. A shorter mean residence time of reaction solution in the US and 

higher ultrasound power successfully realized a higher production rate of FAME.  
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INTRODUCTION 

Biodiesel has emerged as an environmentally-friendly and renewable alternative fuel. The 

estimated global production of Biodiesel in 2015 was 3.1×1010 L yr-1. Biodiesel production is 

estimated to increase to 11×1010 L yr-1 by 2020.1 Biodiesel is produced from triglycerides by 

transesterification with short chain alcohols (Figure 1).2, 3 Alkaline catalysis has often been 

employed in the industrial production of biodiesel, although it requires excess alkaline 

loading and results in environmental problems involving waste disposal.4-6. 

In the last decade an alternative enzymatic process using a lipase enzyme has been 

suggested to catalyze the transesterification because it has the advantage of being able to 

convert low-grade feed-stocks with high free fatty acid (FFA) content, resulting in significant 

economic as well as environmental benefits.7, 8 In order to keep the cost of the enzyme low 

enough at first researchers attempted to recycle the enzyme, aided by immobilization.9-12 

Nevertheless, despite some success it has subsequently become clear that the use of soluble 

(liquid) enzyme comes at a lower cost contribution to the final product and results in 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
significant process simplification. Today the use of liquid lipase for the transesterification in 

the presence of free fatty acids has been reported scientifically and commercially 

demonstrated.13-15  

Several scientific publications attest to the clear advantages of such a system catalyzed by 

Callera Trans L™, a liquid lipase formulation from Thermomyces lanuginosus (Novozymes 

A/S, Denmark).16   

From previous studies it is known that the lipase from Thermomyces lanuginosus has high 

catalytic activity for the transesterification reaction.17-19 Conventionally, in order to make use 

of this enzyme activity, and since the enzyme is interfacially-activated the aqueous-organic 

interface has been made as large as possible by mechanical stirring, using a well agitated 

stirred tank. This is a considerable cost for a commercial process, even at moderate power 

inputs per unit volume of reaction solution. 

More recently ultrasound irradiation has been proposed as a useful technique to accelerate 

transesterification reactions.20-25 Reports suggest that using ultrasound energy can 

considerably intensify the process by generating cavitation in the reaction liquid phase.26, 27 

Cavities subsequently grow and finally collapsed, releasing a large amount of energy in a 

small volume of solution.28 As a result, the very high density of energy influences mass 

transfer between different phases29, and potentially the enzyme also. Previous investigations 

on the use of ultrasound energy for biodiesel production with enzymes has been published. 

Table 1 lists other types of lipase used in enzymatic transesterification assisted by ultrasound 
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irradiation.30-35 The results indicate that ultrasound irradiation would create an effective 

micro-scaled interfacial area where lipid and lipase react in a biodiesel process.  

In this paper, we present a two-compartment reactor system using ultrasound irradiation to 

enhance the enzyme reactivity. The two reactor compartments are connected by a 

recirculation loop and are organized to allow the benefit of ultrasound irradiation on 

productivity of enzyme reaction, while minimizing exposure. 

 

EXPERIMENTAL  

Materials 

Rapeseed oil was obtained from Emmelev A/S (Otterup, Denmark). Methanol (99.8%, 

technical grade) was purchased from VWR Bie & Berntsen A/S (Herlev, Denmark). Table 2 

shows the properties of refined oil used in this study. Acetic acid (99%), n-heptane (99%), 

isopropanol (99%), and tert-butyl methyl ether (99.8%) were obtained from Sigma-Aldrich 

A/S (Brøndby, Denmark). Enzymatic reactions were carried out using soluble lipase (Callera 

LTM), which was kindly donated by Novozymes A/S (Bagsværd, Denmark). The activity of 

the enzyme was reported as approximately 1×105 U/g-original liq., where 1U was defined as 

the activity required to produce 1μmol butyric acid from the hydrolysis of tributyrin under 

standard conditions (pH 7.5, 0.2M substrate).36  

 

Recycle mode  
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Figure 2 presents a schematic diagram of the two-compartment reactor. One compartment is 

termed the “stirred compartment (ST)”, and the other termed the “ultrasound compartment 

(US)”. The ultrasonic horn was not installed at the deepest location in the US cell, since the 

glass made bottom of the US cell was mechanically damaged by direct irradiation of 

ultrasonication. Therefore, the ultrasonic horn was installed at the 2cm depth from the top of 

the liquid level for safety reactions. The reaction fluid was then introduced to the top of the 

US cell in which nearby the ultrasonic horn was placed, as illustrated in Figure 2. 

The ST compartment was made of a cylindrical glass. The initial reaction volume was 

267mL while rapeseed oil 220mL, initial methanol 25mL, and enzyme solution 22mL.The 

volume of recycle loop was in total 40mL. The inside diameter of ST compartment was 5.5cm. 

Mean depth of reaction solution in ST compartment at steady state was 5.4cm. Two baffle 

plates (1cm width) were attached on inside lateral of ST compartment. A 2.4cm diameter 

six-blade rushton turbine impeller was installed in the ST compartment and spun at 1400min-1. 

Two baffles (1cm width) were attached on the inside lateral of the ST compartment. The ST 

compartment was immersed in a water bath (308K). The temperature was controlled by 

equipment from Julabo Labor-technik GmbH; (Seelbach, Germany).  

The effective liquid volume in US compartment (glass flow cell) in steady state was 80mL. 

the ultrasound irradiation device was inserted inside this and supplied by GD14K (Hielscher 

Ultrasonic GmbH, Germany). Ultrasonic irradiation at a frequency of 24kHz was directly 

provided into reaction solution using a horn-shaped cylindrical device UP200S. The diameter 
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φ of the device was 14mm. The cross sectional area of the ultrasonic horn was 153mm2. The 

guaranteed high surface power density was 1.25W mm-2. That can be controlled at 20, 40, and 

60% of maximum. The applied ultrasound output was therefore calculated as 38, 77 and 115W, 

respectively. The temperature in the US compartment was maintained at 308K by a water 

jacket. It was regulated by a Thermo DC10 (Thermo HAAKE, USA).  

The two compartments (ST and US) were connected by a recirculation flow that was 

adjusted using a Watson MARLOW 520S. The recirculation flow rate (F [mL s-1]) varied 

from 0.17 to 1.67mL s-1. The mean residence time of the reaction solution in the US (θ [s]) 

calculated by the volume of US reactor vessel (VU [mL]), which was 80mL, divided by the 

recirculation flow rate as Eq. (1). 

                                          (1) 

The volume of the connected recirculation loop (VL [mL]) between the ST and the US was 

40mL. The initial volume of ST solution (VS [mL]) was 267mL. Therefore, the overall 

circulation time (Θ [s]) throughout US, ST and recirculation loop was calculated by Eq. (2). 

                                (2) 

Table 3 presents details of recirculation conditions in the reactor system. In this work, the 

ratio of residence time of US to the overall reaction line (θ/Θ) was constant at 0.21.  

Rapeseed oil (220mL) was used as a substrate for the reaction. 2g of lipase solution was 

dissolved in 20g of distilled water. The concentration of enzyme based on the mass fraction is 

therefore 0.09 [g-enzyme・g-1 - (enzyme +water)] and used throughout this paper. n-Heptane 
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was employed as an inert component in the organic phase to prepare the desired concentration 

of substrate. The substrate concentration varied from 0.23 to 0.9 [g-oil・g-1 - (oil +n-heptane 

+methanol)]. 

The US was initially empty. Methanol (25mL) was initially added to the rapeseed oil in the 

ST before the reaction. The enzyme aqueous solution (22mL) was then added to the rapeseed 

oil and methanol mixture. The reaction was initiated by adding enzyme, and the recirculation 

flow between the ST and the US was simultaneously started.  

After the initiation of the reaction, methanol was continuously fed (50μL s-1) into the ST. 

Methanol addition was a useful technique to obtain a higher yield of biodiesel according to 

our previous experience. The methanol was introduced using a KNF STEPODS. 03 pump 

(KNF Neuberger AB, Stockholm. Sweden). 

Ultrasound irradiation was initiated when the volume of reaction solution in the US became 

stable at 80mL at the steady state. The recirculation flow rate was monitored and regulated to 

keep the volume of reaction solution in the US at 80mL throughout the reaction.  

 

Sample preparation and analysis by high-performance liquid chromatography 

50μL samples were periodically taken from the ST and then mixed with 500μL solvent A 

(99.6% (v/v) n-heptane and 0.4% (v/v) acetic acid). The mixed sample was centrifuged at 

14500 rpm for 5 min, and then 10μL of supernatant was mixed with 990μL of solvent A 

before high-performance liquid chromatography (HPLC) analysis. 
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40μL of the above sample was injected into an HPLC system (Ultimate 3000, Dionex A/S, 

Hvidovre, Denmark). The HPLC was employed to measure the concentration of triglyceride 

(TAG), diglyceride (DAG), monoglyceride (MAG), free fatty acid (FFA), and fatty acid 

methyl ester (FAME). These five compounds were separated using a cyanopropyl column 

(0.25×0.004m) (Discovery○R , Cyano, Sigma Aldrich A/S, Brøndby, Denmark), a U3000 auto 

sampler, a TCC-3000SD column oven, U3400A quaternary pump modules, and a Corona○R 

Charged Aerosol Detector (Thermo Scientific Dionex, Chelmsford, MA, USA).  

A binary gradient program was employed to separate the five different compounds using 

solvent A, solvent B (99.6% (v/v) tert-butyl methyl ether and 0.4% (v/v) acetic acid), and 

solvent C (iso-propanol). The compounds were detected after separation with the column 

using a CoronaR Charged Aerosol Detector from Thermo Scientific Dionex (Chelmsford, MA, 

USA) with nitrogen gas at a pressure of 241kPa.       

 

RESULTS and DISCUSSION 

Effect of ultrasound on production of FAME 

 In this work, fatty acid methyl ester (FAME) was measured as a main component of 

biodiesel. In Table 4, molecular weight and density of the component reaction fluid was 

presented. The mass fraction of FAME in the reaction solution was employed as an indication 

of the reaction progress of biodiesel production.  
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Figure 3 depicts the time course a typical transesterification reaction using liquid lipase. The 

concentration of TAG, DAG, MAG, and FAME monitored during 24h of the reaction. FAME 

was produced by transesterification of TAG with methanol with the aid of lipase. The 

transesterification is a sequence of three consecutive steps. In the first step, TAG is converted 

to DAG. In the second step, DAG is converted to MAG. In the third step, MAG is converted 

to FFA. Each conversion step yields one FAME molecule, given a total of three FAME 

molecules per one TAG molecule. Fig. 3(a) shows the effect of ultrasound irradiation on the 

time course of the concentration of TAG. The concentration of TAG decreased evidently 

faster especially in the initial 1h by ultrasound irradiation. In the case of intermediates (DAG 

and MAG) in Fig. 3(b) and (c), the peak time of DAG and MAG was also accelerated by 

ultrasound. In this manuscript, the purity of FAME was indicated as the mass fraction of 

FAME in reaction fluid. The final mass fraction of FAME achieved over 90wt% at 15h for 

ultrasound treatment (Fig.3 (d)). In contrast, 24h was needed in the system without any 

ultrasound treatment to give the same yield. Accelerated production was evidently realized by 

ultrasonic treatment compare with no treatment. The cause of reaction enhancement by 

ultrasound irradiation is speculated to be that cavitation caused by the ultrasound induced 

micro-scale turbulence and that the mass transfer resistance was eliminated.37-39 Previous 

reports have suggested that ultrasound could cause the enzyme structure to become flexible; 

100
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thus, the enzyme might shift into its active configuration.40 

In order to understand further the origin of this enhancement a study of reaction kinetics 

was undertaken. Figure 4 presents the results of a kinetic experiment measuring reaction rate 

as a function of substrate concentration ranging from 0.23 to 0.9 [g-oil・g-1 - (oil+ n-heptane + 

methanol)]. In this study, n-heptane was employed as an inert solvent because of the need to 

evaluate the process at different substrate concentrations. As expected, the initial reaction rate 

increased with increasing substrate concentration.   

The kinetic parameters were conveniently determined by a Hanes Woolf plot (Figure 5). 

The maximum reaction rate Vmax with the ultrasound irradiation system was 2.3-fold higher 

than that of the ultrasound free system, but interestingly the Km remained at almost the same 

level (Table 5). An increase in Vmax seems to indicate that a considerable movement of 

reactants to the active site of the enzyme and the reaction products to the medium were 

achieved under the influence of the ultrasonic field.41 

 

Changing ultrasound power 

Figure 6 shows the effect of ultrasound power on the initial reaction rate, which increased 

with increasing ultrasound power. This clear demonstrates the positive effect of ultrasound 

irradiation in accelerating the reaction. With an increase in the ultrasound power, the number 

of cavitation bubbles also increases giving strong effect by catitation.42,43 The initial reaction 

rate of mean residence time of 470s showed that the downward trend after over 77W. It is 
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important to note here that further increase in treatment time caused harmful effects, as 

continuous exposure to cavitating conditions for prolonged time led to degradation of the 

amino acid residues which contributes to the substrate binding domain or catalytic domain of 

the enzyme molecules resulting in decrease in enzyme stability.44 This is the real advantage of 

the two compartment reactor to control the exposure time to ultrasound. 

The ultrasonic irradiation for a reaction solution in short period of 48s and 96s was 

effective to enhance enzymatic initial reaction rate even in the higher power case of 115W. In 

contrast, longer continuous irradiation of ultrasonic power even in the lower ultrasonic power 

cased unexpected damage of enzyme activity. In our results, the irradiation period 470s 

resulted lower initial reaction rate than that of other shorter period cases (48s and 96s) in our 

experimental range of ultrasound power. The cavitation during ultrasound irradiation induced 

oscillation by stable cavitation bubbles, that changes the spatial conformation of enzyme.45 

Even if same accumulated time of ultrasonic irradiation, periodic shorter intermittent 

residence in the US compartment was strategically excelling mode to enhance initial reaction 

rate and to minimize damage of enzyme activity, as illustrated in Figure 7. Molecular 

structure damaged of enzyme well recovered in isolated period just after exposure period in 

the US. Longer period of exposure of high intensity ultrasound resulted in an unexpected 

inhibition to the catalytic activity of enzyme. On the other hands, shorter exposure of 

ultrasound attractively increased the activities of enzymes.46 It can be inferred that ultrasound 

brings the conformational change of enzyme. Higher oscillated frequency of irradiation and 
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isolation periods, illustrated in Fig. 7 (b), proposed the high frequent opportunity for enzyme 

re-activation and refolding of molecular structure of enzyme. Further detail investigation 

needed to establish optimal irradiation manner for enzyme. 

Figure 8 shows the effect of ultrasound power on the produced mass fraction of FAME with 

different mean residence time in the US. For mean residence time of 48s and 96s, the 

maximum mass fraction of FAME appeared at 77W. The mass fraction of FAME obtained at 

24h indicated the maximum at 77W for residence time 48s and 96s. It was lower at power 

inputs above 77W regardless of higher initial reaction rate. Ultrasound irradiation, under these 

extreme conditions, could cause great damage to polypeptide chains, leading to inactivation of 

the enzyme.47 In the case of residence time of 470s, it was slightly decayed with increasing 

ultrasound power. According to our results, residence time less than 96s and ultrasonic 

irradiation power indicated an optimal condition for high initial reaction rate and mass 

fraction of FAME at 24h in reaction solution. 

The ultrasound energy applied to the enzyme seemed too large to disrupt the function of 

enzyme.48-50 Further investigation on the change of molecular structure especially nearby 

active site of the enzyme during ultrasound irradiation was necessary to determine an optimal 

residence time in US in conjunction with the irradiation power of ultrasound.    

 

Changing flow rate 

Figure 9 shows the effect of the space velocity of the reaction solution in the ultrasound 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
compartment. The space velocity is the reciprocal of the mean residence time (θ [s]). 

                             (4) 

As seen in the figure, the initial reaction rate increased with increasing space velocity 

under constant ultrasound power (38W). It is speculated that the attractive association 

between enzyme and substrate was facilitated by micro-scaled cavitation caused by ultrasound 

irradiation. Enhancement of the reaction rate was previously reported for lipase reactions. 51-53  

Figure 10 indicates the effect of exposing the enzyme to ultrasound energy on the initial 

reaction rate. The ultrasound energy is calculated by the following equation. 

(5) 

The initial reaction rate decreased as -0.3 power of the ultrasound energy exposed to enzyme.  

It is speculated that this occurred because the ultrasound irradiation accelerated the biodiesel 

reaction and maintained the enzyme activity due to the higher circulation flow rate. 

 

CONCLUSIONS 

Biodiesel (FAME) was successfully produced using a two-compartment reactor with 

optimal exposure to ultrasound balancing enhancement with suppression of enzyme damage. 

Enzymatic production of biodiesel by ultrasound irradiation was achieved with the reactor. 

The reaction rate was increased by ultrasound irradiation. The FAME yield was over 90wt%. 

In particular reactions with ultrasound treatment reached equilibrium faster than with no 

treatment. A shorter mean residence time and higher ultrasound power in the ultrasound 
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compartment realized higher initial reaction rate of FAME production.  

 

 

Nomenclature 

F: volumetric circulating flow rate [mL s-1] 

Km: Michaelis constant [g-oil g-1-(oil+n-heptane+methanol)] 

[S]: substrate concentration [g-oil g-1-(oil+n-heptane+methanol)] 

Vi: initial reaction rate [g-FAME (g-(oil+n-heptane+methanol )・s)-1] 

VL: volume of the connected recirculation loop  40mL 

V max: maximum reaction rate [g-FAME (g-(oil+n-heptane+methanol )・s)-1] 

VS: initial volume of ST solution  267mL 

VU: volume of US reactor vessel  80mL 

 

Greek symbols 

θ: mean residence time of the reaction solution in the US [s] 

θ-1: space velocity of the reaction solution in the US [s-1] 

Θ: overall circulation time of reaction line (US+ ST+ recirculation loop) [s] 

φ: diameter of ultrasonic device (cylindrical shape) [mm] 

 

Abbreviations  
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DAG: diacylglyceride 

FAME: fatty acid methyl ester, biodiesel 

FFA: free fatty acid 

MeOH: methanol 

ST: stirred compartment 

TAG: triacylgylceride 

US: ultrasound irradiation compartment  
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Caption of Figures   

 

Figure 1 Consecutive reaction processes for fatty acid methyl ester (FAME) 

production by lipase with alcohol. 

 

Figure 2 Schematic diagram of the circulation two-compartment reactor. 

 

Figure 3 Change of mass fraction of components of transesterification reactions. 

(a) TAG. (b) DAG. (c) MAG. (d) FAME. 

 

Figure 4 Reaction enhancement of ultrasound irradiation on FAME production 

with ultrasound irradiation in US compartment (38W). Enzyme concentration 

was set at 0.09 [g-enzyme g-1 – (enzyme + water)]. 

 

Figure 5 Hanes-Woolf plot for reaction parameters FAME production by soluble 

lipase (Callera LTM) donated by Novozymes A/S (Bagsværd, Denmark). 

Substrate was a rapeseed oil obtained from Emmelev A/S (Otterup, Denmark). 

 

Figure 6 Effect of ultrasound power on initial reaction rate involved with mean 
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residence time in the US compartment.  

 

Figure 7 Different mean residence time in the US compartment of reaction fluid. 

(a) Periodic longer intermittent residence in the US. Ultrasonic irradiation to 

enzyme caused unexpected damage of enzyme. Enzyme hardly recovered its 

reactivity. (b) Periodic shorter intermittent residence in the US. Damage of 

enzyme by short ultrasonic irradiation was quickly recovered during isolated 

period in the ST just after exposure in the US. 

 

Figure 8 Lipase productivity on FAME at 24h enhanced by ultrasonic 

irradiation. 

 

Figure 9 Effect of space velocity in the US compartment on initial reaction rate 

under the ultrasound power 38W. Initial reaction rate was remarkably improved 

in higher space velocity in the US compartment.   

 

Figure 10 Logarithmic correlation of initial reaction rate and ultrasound energy 

employed. Higher initial reaction rate was successfully attained in higher space 

velocity consisted with minimalized enzyme damage in US compartment even if 

high irradiation energy of ultrasound.  
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Figure 2 Nakayama et al.  (2016)
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Figure 3   Nakayama et al.  (2016)
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Figure 4   Nakayama et al.  (2016)
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Figure 5 Nakayama et al. (2016)
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Figure 6  Nakayama et al.  (2016)
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Figure 7  Nakayama et al.  (2016)
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Figure 8 Nakayama et al.  (2016)
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Figure 9  Nakayama et al. (2016)
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Table 1 Nakayama et al.  (2016)

Table 1 Previous articles for production of biodiesel from natural resources with ultrasound irradiation.

Author Year Ultrasound reactor type Ultrasound power [W] / frequency [kHz] Feedstock Catalyst Solvent Yield Reference

Subhedar, P.B. and Gogate P.R. 2016 Direct (horn) 80W / 20kHz Waste cooking oil Enzyme (Lipozyme RM IM) Methyl acetate 96.1% [43]

Adewale, P. et al. 2015 Direct (horn) 500W / 20kHz Waste tallow Enzyme (Candida antatctica lipaseB) Methanol 85.6% [38]

Subhedar, P.B. et al. 2015 Indirect (bath) 120W / 45kHz Sunflower oil Enzyme (Lipozyme RM IM) Methanol 96% [39]

Michelin, S. et al. 2015 Indirect (bath) 132W / 40kHz Macauba coconut oil Enzyme (Novozyme 435) Ethanol 70% [30]

Gharat, N. and Rathod, V.K. 2013 Indirect (bath) 200W / 25kHz Waste cooking oil Enzyme (Novozyme 435) Methanol 87% [31]

Tupufia, S.C et al. 2013 Indirect (bath) 80W / 43kHz Coconut oil Enzyme (Novozyme 435) Ethanol 91% [32]

Batistella, L. et al. 2012 Indirect (bath) 100W / 37kHz Soybean oil Enzyme (Novozyme 435, Lipozyme RM IM) Ethanol 90% [33]

Kumar, G. et al. 2011 Direct (horn) 100W / 24kHz Jatropha curcas  oil Enzyme (immobilized lipase from Enterobacter aerogenes ) Methanol 84.5% [34]

Yu, D et al. 2010 Indirect (bath) 250W / 40kHz Soybean oil Enzyme (Novozyme 435) Methanol 96% [53]
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Table 2 Nakayama et al.  (2016)

Table 2 Typical component of refined rapeseed oil.

Refined rapeseed oil [%]

Myristic acid C14:0 0.1

Palmitic acid C16:0 4.8

Palmitoleic acid C16:1 0.3

Stearic acid C18:0 1.8

Oleic acid C18:1 63.7

Linoleic acid C18:2 18.8

Linolenic acid C18:3 7.9

Arachidic acid C20:0 0.6

Gadoleic acid C20:1 1.1

Behenic acid C22:0 0.3

Erucic acid C22:1 0.1

Properties
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Table 3 Nakayama et al.  (2016)

Table 3 Details of recirculation conditions in the two-compartment reactor.

Volume of US: VU [mL] Volume of ST:VS  [mL]
Volume of connected recirculation
loop between ST and US：VL [mL] Flow rate: F  [mL s -1] Mean residence time in US: θ  [s] Overall circulation time of

reaction line：Θ  [s]
θ  / Θ　[-]

0.17 470 2276 0.21
0.50 160 774 0.21
0.83 96 466 0.21
1.67 48 231 0.21

80 267 40
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Table 4 Nakayama et al.  (2016)

Table 4 Properties of rapeseed oil.

Molecular Weight Density [kg m
-3

]

FAME 295 -

FFA 282 895

TAG 881 920

DAG 618 -

MAG 355 -

Rapeseed oil - 910
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Table 5 Nakayama et al.  (2016)

Table 5 Kinetic parameters of transesterification of rapeseed oil in two-compartment reactor.

Ultrasound irradiation
Vmax

[g-FAME (g-(oil+n-heptane+methanol)・s)-1]
K m

 [g-oil g-1-(oil+n-heptane+methanol)]
Free 2.65×10-5 0.23
38W 6.07×10-5 0.27
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Figure 10   Nakayama et al.  (2016)
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