61 research outputs found

    First clinical assessment of [ 18 F]MC225, a novel fluorine-18 labelled PET tracer for measuring functional P-glycoprotein at the blood-brain barrier

    Get PDF
    Objective: 5-(1-(2-[18F]fluoroethoxy))-[3-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-propyl]-5,6,7,8-tetrahydronaphthalen ([18F]MC225) is a selective substrate for P-glycoprotein (P-gp), possessing suitable properties for measuring overexpression of P-gp in the brain. This is the first-in-human study to examine safety, radiation dosimetry and P-gp function at the blood-brain barrier (BBB) of [18F]MC225 in healthy subjects. Methods: [18F]MC225 biodistribution and dosimetry were determined in 3 healthy male subjects, using serial 2 h and intermittent 4 and 6 h whole-body PET scans acquired after [18F]MC225 injection. Dynamic [18F]MC225 brain PET (90 min) was obtained in 5 healthy male subjects. Arterial blood was sampled at various time intervals during scanning and the fraction of unchanged [18F]MC225 in plasma was determined. T1-weighted MRI was performed for anatomical coregistration. Total distribution volume (VT) was estimated using 1- and 2-tissue-compartment models (1-TCM and 2-TCM, respectively). VT was also estimated using the Logan graphical method (Logan plot) (t* = 20 min). Surrogate parameters without blood sampling (area-under the curve [AUC] of regional time-activity curves [TACs] and negative slope of calculated TACs) were compared with the VT values. Results: No serious adverse events occurred throughout the study period. Although biodistribution implied hepatobiliary excretion, secretion of radioactivity from liver to small intestine through the gallbladder was very slow. Total renal excreted radioactivity recovered during 6 h after injection was 0.9). AUCs of TACs were positively correlated with VT (2-TCM) values (r2: AUC0-60 min = 0.61, AUC0-30 min = 0.62, AUC30-60 min = 0.59, p < 0.0001). Negative slope of SUV TACs was negatively correlated with VT (2-TCM) values (r2 = 0.53, p < 0.0001). Conclusions: This initial evaluation indicated that [18F]MC225 is a suitable and safe PET tracer for measuring P-gp function at the BBB. Keywords: Blood–Brain barrier; Dosimetry; First-in-human; P-glycoprotein; Positron emission tomography

    Allergin-1 inhibits TLR2-mediated mast cell activation and suppresses dermatitis

    Get PDF
    TLR2 recognizes cell wall components of Staphylococcus aureus, which colonizes >90% of atopic eczematous skin lesions. The regulatory mechanisms of TLR2 signaling in the skin remain unclear. Allergin-1, an inhibitory immunoglobulin-like receptor containing an ITIM, is expressed on mast cells (MCs) and inhibits IgE-mediated anaphylaxis in mice. Here, we show that Allergin-1 inhibits TLR2-mediated activation of, and inflammatory cytokine production by, MCs in vitro. Compared with wild-type mice, Allergin-1-deficient mice showed enhanced ear swelling with enhanced collagen deposition and greater Ly6G+ neutrophil recruitment after intra-dermal injection of Pam2CSK4 into pinnae. Using Mas–TRECK mice, which is an MC deletion system based on il4 enhancer elements, we also demonstrated that Allergin-1 on MCs is responsible for the Pam2CSK4-induced ear swelling. These results suggest that Allergin-1 on skin MCs suppresses TLR2-induced dermatitis

    Assessment of left atrial systolic dyssynchrony in paroxysmal atrial fibrillation and heart failure using cardiac magnetic resonance imaging: MESA study

    Get PDF
    Background: Left atrial (LA) remodeling in response to cardiovascular and hemodynamic stress may precede atrial fibrillation (AF) and heart failure (HF). We hypothesized that LA systolic synchronous contraction as a functional measure of LA remodeling is deranged in patients with paroxysmal AF and HF. Methods: We performed a nested case-control analysis with 1:2 matching for 39 cases of paroxysmal AF (n=28, in sinus rhythm during cardiac magnetic resonance (CMR)) and HF (n=14, AF+HF; n=3) and 78 controls with similar demographic and clinical characteristics at the baseline (Table 1). LA circumferential (short axis) and longitudinal strain rate (horizontal long axis) were measured using Multi-modality Tissue Tracking (Toshiba, Japan) from short and long-axis cine CMR images. Circumferential LA systolic dyssynchrony among 18 LA segments (6 segments x 3 slices) was evaluated as; Standard Deviation (SD) of time to pre atrial contraction Strain rate (PreA Src) and Peak systolic strain rate (Peak Srac) (Figure 1). Similarly, longitudinal LA dyssynchrony parameters (among 6 segments) were: SD-Time to pre-atrial contraction strain rate (PreA SrL) and SD-Time to peak systolic strain rate (Peak-SraL). Wilcoxon-rank sum test (non-parametric) or two sample t-test (parametric) were used for comparison between the groups. Results: In participants during MESA exam 5 (age 74±8 years, 51.4% men), systolic circumferential dyssynchrony (SD-TP-PreA Src, msec) was significantly higher in the cases compared to controls (45.06 vs. 28.73, p<0.010). Similarly, case group had greater longitudinal dyssynchrony than controls; SD-TP PreA SrL (51.62 vs. 36.43, p=0.001) and SD-TP-Peak SraL (45.23 vs. 35.92, p=0.027) (Table 1). Conclusions: Patients with paroxysmal atrial fibrillation and heart failure have significantly higher LA circumferential and longitudinal systolic dyssynchrony compared to normal controls

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Microglia-Triggered Plasticity of Intrinsic Excitability Modulates Psychomotor Behaviors in Acute Cerebellar Inflammation

    Get PDF
    小脳炎症時の神経活動の過興奮によって鬱様症状が起こる仕組みを解明. 京都大学プレスリリース. 2019-09-11.An overactive cerebellum causes issues across the brain. 京都大学プレスリリース. 2019-09-12.Cerebellar dysfunction relates to various psychiatric disorders, including autism spectrum and depressive disorders. However, the physiological aspect is less advanced. Here, we investigate the immune-triggered hyperexcitability in the cerebellum on a wider scope. Activated microglia via exposure to bacterial endotoxin lipopolysaccharide or heat-killed Gram-negative bacteria induce a potentiation of the intrinsic excitability in Purkinje neurons, which is suppressed by microglia-activity inhibitor and microglia depletion. An inflammatory cytokine, tumor necrosis factor alpha (TNF-α), released from microglia via toll-like receptor 4, triggers this plasticity. Our two-photon FRET ATP imaging shows an increase in ATP concentration following endotoxin exposure. Both TNF-α and ATP secretion facilitate synaptic transmission. Region-specific inflammation in the cerebellum in vivo shows depression- and autistic-like behaviors. Furthermore, both TNF-α inhibition and microglia depletion revert such behavioral abnormality. Resting-state functional MRI reveals overconnectivity between the inflamed cerebellum and the prefrontal neocortical regions. Thus, immune activity in the cerebellum induces neuronal hyperexcitability and disruption of psychomotor behaviors in animals
    corecore