17 research outputs found

    Toy model of the Nucleon - Nucleon potential

    Get PDF
    We start from a system of six interacting constituent quarks and examine how the picture of two nucleons can change when substructure of the nucleons are taken into account.Comment: 9 pages, 6 figures, proceedings of the international conference "Nuclear Structure and Related Topics

    Correlations in self-bound systems of identical fermions

    Get PDF
    A method for the calculation of translationally invariant wave functions for systems of identical fermions with arbitrary potential of pair interaction is developed. It is based on the well-known result that the essential dynamic part of the Hamiltonian for the system of identical particles is the Reduced Hamiltonian operator describing relative movement of two particles inside the system. The eigenfunctions of this operator take into account all correlations caused by interaction. These eigenfunctions are basic for the construction of the components (i.e. the functions with a lower degree of antisymmetry) of the system wave functions. The main problem of this approach appears to be antisymmetrization of the components. The developed universal algorithm for antisymmetrization gives a possibility to perform this operation in a simple way and keep numerical approximations under control.Comment: 20 pages REVTeX, submitted to Lithuanian J. Phy

    Stable carbon and nitrogen isotope ratio in PM1 and size segregated aerosol particles over the Baltic Sea

    Get PDF
    We analysed delta C-13 of total carbon (TC) and PN of total nitrogen (TN) in submicron (PM1) and size segregated aerosol particles ( PM0.056-2.5) collected during a cruise in the Baltic Sea from 9 to 17 November 2012. PM1 were characterized by the highest delta C-13 (-26.4 parts per thousand) and lowest delta N-15 (-0.2 and 0.8 parts per thousand) values when air masses arrived from the southwest direction (Poland). The obtained delta C-13 values indicated that combined emissions of coal and diesel/gasoline combustion were the most likely sources of TC. The depleted delta N-15 values indicated that TN originated mainly from liquid fuel combustion (road traffic, shipping) during this period. The lowest PC and highest delta N-15 values were determined in PM1 samples during the western airflow when the air masses had no recent contact with land. The highest delta N-15 values were probably associated with chemical aging of nitrogenous species during long-range transport, the lowest delta C-13 values could be related to emissions from diesel/gasoline combustion, potentially from ship traffic. The delta C-13 analysis of size-segregated aerosol particles PM0.056-2.5 revealed that the lowest delta C-13 values were observed in the size range from 0.056 to 0.18 mu m and gradual C-13 enrichment occurred in the size range from 0.18 to 2.5 mu m due to different sources or formation mechanisms of the aerosols

    Seasonal changes of sources and volatility of carbonaceous aerosol at urban, coastal and forest sites in Eastern Europe (Lithuania)

    Get PDF
    We measured stable carbon isotope ratios of total carbon (TC) and organic carbon (OC) in fine carbonaceous aerosol fraction sampled in August and September 2013 at urban, coastal and forest sites in Lithuania. δ13C values of TC for all three sites over the whole measurement period varied from −29.3 to −26.6‰, which is in the range of particles emitted by fossil fuel combustion in Eastern Europe. The isotopic composition at the forest and coastal site showed a similar variation during two contrasting pollution periods. δ13C values in the clean period were more variable, whereas the polluted period was characterized by a gradual enrichment in δ13C compared to the clean period. In the polluted period air masses originated from southern, southeastern or southwestern direction, indicating long-range transport of pollutants from Eastern Europe and Southern Europe to Lithuania. Oxidative processing during long-range transport or the different source signatures (e.g., enriched 13C signature of gasoline used in Western Europe vs. Eastern Europe) could cause the less negative δ13COC values during the polluted episode. δ13C for OC desorbed from the filter samples was separately measured during three different temperature steps (200 °C, 350 °C and 650 °C). OC desorbed at 200 °C had the most depleted 13C signature of around −29‰ at all three sites. A comparison with previously published data measured during the winter at the same sites showed that both TC and OC had less negative δ13C values in winter than in summer, which can be explained by the contribution of biomass/coal burning sources in winter. At the urban site δ13C of OC did not change much with increasing desorption temperature in winter, which is typical for primary sources, but in the summer δ13C of OC was depleted for lower desorption temperatures, possibly due to the influence of SOA formation. A higher fraction of more refractory OC in summer compared to winter-time suggests active photochemical processing of the primary organic aerosol as an important process at all three sites

    delta C-13 signatures of organic aerosols:Measurement method evaluation and application in a source study

    Get PDF
    Analysis of the stable carbon isotope 13C in organic carbon (OC) can give insight into sources and atmospheric processing of carbonaceous aerosols, provided the 13C source signatures are known. However, only few data on 13C signatures of OC emitted by common sources of carbonaceous aerosol are available in Europe. We present and evaluate an improved version of a measurement method to obtain δ13C signatures on organic aerosols desorbed from filter samples at three different desorption temperatures (200 °C, 350 °C and 650 °C) and apply it in a source study. With our calibration approach, the reproducibility of a L-Valine reference material desorbed at a single temperature step of 650 °C shows a standard deviation of 0.19‰ over a period of more than one year. The average δ13C value for this reference material over 248 measurements is −24.10‰, which shows only a slight bias to the nominal value of −24.03‰. Repeated analysis of ambient filter samples desorbed at three temperature steps show typical standard deviations of about 0.3‰ for all temperature steps (200 °C, 350 °C and 650 °C). Isotopic fractionation due to partial thermal desorption during the individual temperature steps was tested on single compound reference materials. It showed significant isotopic fractionation only at temperature steps, in which a very minor fraction of the compound was desorbed. Possible isotope effects caused by charring of organic material were investigated and found to be not significant. The thermal desorption method was applied to various source filter samples from the region of Naples, Italy. We analyzed two different biomass burning sources, exhaust from a city bus and traffic emissions collected in a tunnel and compared these to ambient filter samples from the same region. δ13C signatures of the total OC show values in a narrow range of about −28‰ to −26‰ for all sources, which does not allow a source apportionment only based on 13C. Nevertheless, the results add information to a source inventory of δ13C, where information of 13C in organic aerosol from specific emission sources are rare. City bus emissions show little variation of δ13C over the temperature steps, whereas biomass burning aerosol is enriched in 13C for OC desorbed at 650 °C. For PM10 samples in the urban tunnel an enrichment in δ13C at the 650 °C temperature steps was observed, which is likely caused by the contribution of carbonate carbon to the carbonaceous material desorbed at this temperature step

    Characteristics, sources and evolution of fine aerosol (PM1) at urban, coastal and forest background sites in Lithuania

    No full text
    The chemical and isotopic composition of organic aerosol (OA) samples collected on PM1 filters was determined as a function of desorption temperature to investigate the main sources of organic carbon and the effects of photochemical processing on atmospheric aerosol. The filter samples were collected at an urban (54°38′ N, 25°18′ E), coastal (55°55′ N, 21°00′ E) and forest (55°27′ N, 26°00’ E) site in Lithuania in March 2013. They can be interpreted as winter-time samples because the monthly averaged temperature was −4 °C. The detailed chemical composition of organic compounds was analysed with a thermal desorption PTR-MS. The mass concentration of organic aerosol at the forest site was roughly by a factor of 30 lower than at the urban and coastal site. This fact could be an indication that in this cold month the biogenic secondary organic aerosol (SOA) formation was very low. Moreover, the organic aerosol collected at the forest site was more refractory and contained a larger fraction of heavy molecules with m/z > 200. The isotopic composition of the aerosol was used to differentiate the two main sources of organic aerosol in winter, i.e. biomass burning (BB) and fossil fuel (FF) combustion. Organic aerosol from biomass burning is enriched in 13C compared to OA from fossil fuel emissions. δ13COC values of the OA samples showed a positive correlation with the mass fraction of several individual organic compounds. Most of these organic compounds contained nitrogen indicating that organic nitrogen compounds formed during the combustion of biomass may be indicative of BB. Other compounds that showed negative correlations with δ13COC were possibly indicative of FF. These compounds included heavy hydrocarbons and were on the average less oxidized than the bulk organic carbon. The correlation of δ13COC and the O/C ratio was positive at low but negative at high desorption temperatures at the forest site. We propose that this might be due to photochemical processing of OA. This processing can lead to accumulation of carbon in the more refractory organic fraction that is depleted in 13C compared with the less refractory organic fraction. Detailed laboratory experiments are necessary to further investigate the aging of aerosol particles before firm conclusions can be drawn

    Sources and atmospheric processing of size segregated aerosol particles revealed by stable carbon isotope ratios and chemical speciation

    Get PDF
    Size-segregated aerosol particles were collected during winter sampling campaigns at a coastal (55 degrees 37' N, 21 degrees 03'E) and an urban (54 degrees 64' N, 25 degrees 18' E) site. Organic compounds were thermally desorbed from the samples at different temperature steps ranging from 100 degrees C to 350 degrees C. The organic matter (OM) desorbed at each temperature step is analysed for stable carbon isotopes using an isotope ratio mass spectrometer (IRMS) and for individual organic compounds using a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-MS). The OM desorbed at temperature

    Sources and atmospheric processing of size segregated aerosol particles revealed by stable carbon isotope ratios and chemical speciation

    Get PDF
    Size-segregated aerosol particles were collected during winter sampling campaigns at a coastal (55°37′ N, 21°03′E) and an urban (54°64′ N, 25°18′ E) site. Organic compounds were thermally desorbed from the samples at different temperature steps ranging from 100 °C to 350 °C. The organic matter (OM) desorbed at each temperature step is analysed for stable carbon isotopes using an isotope ratio mass spectrometer (IRMS) and for individual organic compounds using a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-MS). The OM desorbed at temperatures <200 °C was classified as less refractory carbon and the OM desorbed at temperatures between 200 °C and 350 °C was classified as more refractory carbon. At the coastal site, we identified two distinct time periods. The first period was more frequently influenced by marine air masses than the second time period, which was characterized by Easterly wind directions and continental air masses. During the first period OM contained a large fraction of hydrocarbons and had a carbon isotopic signature typical of liquid fossil fuels in the region. Organic mass spectra provide strong evidence that shipping emissions are a significant source of OM at this coastal site. The isotopic and chemical composition of OM during the second period at the coastal site was similar to the composition at the urban site. There was a clear distinction in source contribution between the less refractory OM and the more refractory OM at these sites. According to the source apportionment method used in this study, we were able to identify fossil fuel burning as predominant source of the less refractory OM in the smallest particles (D50 < 0.18 μm), and biomass burning as predominant source of the more refractory OM in the larger size range (0.32 < D50 < 1 μm). Chemical and isotopic analysis of carbonaceous aerosol particles revealed a clear distinction in source contribution at coastal and urban sites

    An automated method for thermal-optical separation of aerosol organic/elemental carbon for C-13 analysis at the sub-mu gC level: A comprehensive assessment

    Get PDF
    We describe and thoroughly evaluate a method for C-13 analysis in different fractions of carbonaceous aerosols, especially elemental carbon (EC). This method combines a Sunset thermal-optical analyzer and an isotope ratio mass spectrometer (IRMS) via a custom-built automated separation, purification, and injection system. Organic carbon (OC), EC, and other specific fractions from aerosol filter samples can be separated and analyzed automatically for C-13 based on thermal-optical protocols (EUSAAR_2 in this study) at sub-pgC levels. The main challenges in isolating EC for C-13 analysis are the possible artifacts during OC/EC separation, including the premature loss of EC and the formation of pyrolyzed OC (pOC) that is difficult to separate from EC. Since those artifacts can be accompanied with isotope fractionation, their influence on the stable isotopic composition of EC was comprehensively investigated with various test compounds. The results show that the thermal-optical method is relatively successful in OC/EC separation for C-13 analysis. The method was further tested on real aerosols samples. For biomass-burning source samples, (partial) inclusion of pOC into CC has negligible influence on the C-13 signature of CC. However, for ambient samples, the influence of pOC on the C-13 signature of CC can be significant, if it is not well separated from CC, which is true for many current methods for measuring C-13 on EC. A case study in Xi'an, China, where pOC is enriched in C-13 compared to EC, shows that this can lead to an overestimate of coal and an underestimate of traffic emissions in isotope-based source apportionment. (C) 2021 Elsevier B.V. All rights reserved
    corecore