11 research outputs found

    Corrigendum: Use of the index of pulmonary vascular disease for predicting longterm outcome of pulmonary arterial hypertension associated with congenital heart disease

    Get PDF

    Use of the index of pulmonary vascular disease for predicting long-term outcome of pulmonary arterial hypertension associated with congenital heart disease

    Get PDF
    AimsLimited data exist on risk factors for the long-term outcome of pulmonary arterial hypertension (PAH) associated with congenital heart disease (CHD-PAH). We focused on the index of pulmonary vascular disease (IPVD), an assessment system for pulmonary artery pathology specimens. The IPVD classifies pulmonary vascular lesions into four categories based on severity: (1) no intimal thickening, (2) cellular thickening of the intima, (3) fibrous thickening of the intima, and (4) destruction of the tunica media, with the overall grade expressed as an additive mean of these scores. This study aimed to investigate the relationship between IPVD and the long-term outcome of CHD-PAH.MethodsThis retrospective study examined lung pathology images of 764 patients with CHD-PAH aged <20 years whose lung specimens were submitted to the Japanese Research Institute of Pulmonary Vasculature for pulmonary pathological review between 2001 and 2020. Clinical information was collected retrospectively by each attending physician. The primary endpoint was cardiovascular death.ResultsThe 5-year, 10-year, 15-year, and 20-year cardiovascular death-free survival rates for all patients were 92.0%, 90.4%, 87.3%, and 86.1%, respectively. The group with an IPVD of ≥2.0 had significantly poorer survival than the group with an IPVD <2.0 (P = .037). The Cox proportional hazards model adjusted for the presence of congenital anomaly syndromes associated with pulmonary hypertension, and age at lung biopsy showed similar results (hazard ratio 4.46; 95% confidence interval: 1.45–13.73; P = .009).ConclusionsThe IPVD scoring system is useful for predicting the long-term outcome of CHD-PAH. For patients with an IPVD of ≥2.0, treatment strategies, including choosing palliative procedures such as pulmonary artery banding to restrict pulmonary blood flow and postponement of intracardiac repair, should be more carefully considered

    Genetic risk score based on the prevalence of vertebral fracture in Japanese women with osteoporosis

    Get PDF
    A genetic risk score (GRS) was developed for predicting fracture risk based on the prevalence of vertebral fractures in 441 Japanese females with osteoporosis. A total of 979 (858 nonsynonymous and 121 silent) single-nucleotide polymorphisms (SNPs) located in 74 osteoporosis-susceptibility genes were genotyped and evaluated for their association with fracture prevalence. Four SNPs (protein kinase domain containing, cytoplasmic [PKDCC; rs4952590], CDK5-regulatory subunit-associated protein 1-like 1 [CDKAL1; rs4712556], wingless-type MMTV-integration site family member 16 [WNT16; rs2707466], and G-patch domain-containing gene 1 [GPATCH1; rs10416265]) showed a significant association (p < 0.05) with the fracture, in which the minor allele of the former two SNPs was the protective allele and that of the latter two SNPs was the risk allele. Applying a dominant-genetic model, we allotted −1 point each to the protective-allele carriers and 1 point each to the risk-allele carriers, and GRS values were calculated as the sum of the points. The receiver-operating characteristic curves showed that GRS adequately predicted vertebral fracture. For the model predicted by the GRS with and without the effect of age, areas under the curves were 0.788 (95% confidence interval [CI]: 0.736–0.840) and 0.667 (95% CI: 0.599–0.735), respectively. Multiple logistic regression analysis revealed that the odds ratio for the association between fracture prevalence and GRS was 3.27 (95% CI: 1.36–7.87, p = 0.008) for scores of −1 to 0 (n = 303) and 12.12 (95% CI: 4.19–35.07, p < 0.001) for scores of 1 to 2 (n = 35) relative to a score of −2 (n = 103). The GRS based on the four SNPs could help identify at-risk individuals and enable implementation of preventive measures for vertebral fracture. Keywords: Genetic risk score, Osteoporosis, Single-nucleotide polymorphism, Vertebral fractur
    corecore