53 research outputs found

    Compact objects as the catalysts for vacuum decays

    Get PDF
    We discuss vacuum decays catalyzed by spherical and horizonless objects and show that an ultra compact object could catalyze a vacuum decay around it within the cosmological time. The catalytic effect of a horizonless compact object could be more efficient than that of a black hole since in this case there is no suppression of the decay rate due to the decrement of its Bekestein entropy. If there exists another minimum with AdS vacuum in the Higgs potential at a high energy scale, the abundance of compact objects such as monopoles, neutron stars, axion stars, oscillons, Q-balls, black hole remnants, gravastars and so on, could be severely constrained. We find that an efficient enhancement of nucleation rate occurs when the size of the compact object is comparable to its Schwarzschild radius and the bubble radius.Comment: 9 pages, 6 figures, revised version accepted by PL

    Effective lipid extraction from undewatered microalgae liquid using subcritical dimethyl ether

    Get PDF
    [Background] Recent studies of lipid extraction from microalgae have focused primarily on dewatered or dried samples, and the processes are simple with high lipid yield. Yet, the dewatering with drying step is energy intensive, which makes the energy input during the lipid production more than energy output from obtained lipid. Thus, exploring an extraction technique for just a thickened sample without the dewatering, drying and auxiliary operation (such as cell disruption) is very significant. Whereas lipid extraction from the thickened microalgae is complicated by the high water content involved, and traditional solvent, hence, cannot work well. Dimethyl ether (DME), a green solvent, featuring a high affinity for both water and organic compounds with an ability to penetrate the cell walls has the potential to achieve this goal. [Results] This study investigated an energy-saving method for lipid extraction using DME as the solvent with an entrainer solution (ethanol and acetone) for flocculation-thickened microalgae. Extraction efficiency was evaluated in terms of extraction time, DME dosage, entrainer dosage, and ethanol:acetone ratio. Optimal extraction occurred after 30 min using 4.2 mL DME per 1 mL microalgae, with an entrainer dosage of 8% at 1:2 ethanol:acetone. Raw lipid yields and its lipid component (represented by fatty acid methyl ester) contents were compared against those of common extraction methods (Bligh and Dryer, and Soxhlet). Thermal gravimetry/differential thermal analysis, Fourier-transform infrared spectroscopy, and C/H/N elemental analyses were used to examine differences in lipids extracted using each of the evaluated methods. Considering influence of trace metals on biodiesel utilization, inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectroscopy analyses were used to quantify trace metals in the extracted raw lipids, which revealed relatively high concentrations of Mg, Na, K, and Fe. [Conclusions] Our DME-based method recovered 26.4% of total raw lipids and 54.4% of total fatty acid methyl esters at first extraction with remnants being recovered by a 2nd extraction. In additional, the DME-based approach was more economical than other methods, because it enabled simultaneous dewatering with lipid extraction and no cell disruption was required. The trace metals of raw lipids indicated a purification demand in subsequent refining process

    Microalgae preparation and lipid extraction by subcritical dimethyl ether

    Get PDF
    Biodiesel produced from microalgae is a potential alternative due to the high growth rate of microalgae, the possibility of using nonarable land, and high lipid accumulation rate. Microalgae cultivation, cell harvesting and disruption are the important steps before lipid extraction for the biodiesel. In the co-submission article, the details of the whole process cannot be clearly explained. In this regard, we present the details of methods on parameter of photo-bioreactor for cultivating microalgae, flocculation tests to determine optimal flocculant dosage in harvesting, parameter of Dimethyl ether (DME) subcritical extraction device and full-factorial design for investigating the influence of extraction time, initial water content and DME dosage on the extraction performance. It will allow researchers to reproduce these experiments. • The method shows a cell disruption assisted lipid extraction by subcritical dimethyl ether. • Model is built from full-factorial design to investigate multi-factor influence. • Differential scanning calorimetry can be applicable to measure free water content

    Effect of pH on the performance of an acidic biotrickling filter for simultaneous removal of H₂S and siloxane from biogas

    Get PDF
    Acidic biotrickling filters (BTF) can be used for simultaneous removal of hydrogen sulfide (H₂S) and siloxane from biogas. In this study, the performance of a BTF under different acidic pH conditions was investigated. The removal profile of H₂S showed that 90% of H₂S removal was achieved during the first 0.4 m of BTF height with down-flow biogas. Decamethylcyclopentasiloxane (D5) removal decreased from 34.5% to 15.6% when the pH increased from 0.88 to 3.98. Furthermore, the high partition coefficient of D5 obtained in under higher pH condition was attributed to the higher total ionic strength resulting from the addition of sodium hydroxide solution and mineral medium. The linear increase in D5 removal with the mass transfer coefficient (kL) indicated that the acidic recycling liquid accelerated the mass transfer of D5 in the BTF. Therefore, the lower partition coefficient and higher kL under acidic pH conditions lead to the efficient removal of D5. However, the highly acidic pH 0.9 blocked mass transfer of H₂S and O2 gases to the recycling liquid. Low sulfur oxidation activity and low Acidithiobacillus sp. content also deteriorated the biodegradation of H₂S. Operating the BTF at pH 1.2 was optimal for simultaneously removing H₂S and siloxane

    Mercury emission profile for the torrefaction of sewage sludge at a full-scale plant and application of polymer sorbent

    Get PDF
    We evaluated mercury (Hg) behavior in a full-scale sewage sludge torrefaction plant with a capacity of 150 wet tons/day, which operates under a nitrogen atmosphere at a temperature range of 250–350 °C. Thermodynamic calculations and monitoring results show that elemental Hg (Hg⁰) was the dominant species in both the pyrolysis gas during the torrefaction stage and in the flue gas from downstream air pollution control devices. A wet scrubber (WS) effectively removed oxidized Hg from the flue gas and moved Hg to wastewater, and an electrostatic precipitator (ESP) removed significant particulate-bound Hg but showed a limited capacity for overall Hg removal. Hg bound to total suspended solids had a much higher concentration than that of dissolved Hg in wastewater. Total suspended solid removal from wastewater is therefore recommended to reduce Hg discharge. Existing air pollution control devices, which consist of a cyclone, WS, and ESP, are not sufficient for Hg removal due to the poor Hg⁰ removal performance of the WS and ESP; a further Hg0 removal unit is necessary. A commercial packed tower with sorbent polymer catalyst composite material was effective in removing Hg (83.3%) during sludge torrefaction

    Motion-Capture-Based Avatar Control Framework in Third-Person View Virtual Environments

    No full text
    This paper presents a motion-capture-based control framework for third-person view virtual reality applications. Using motion capture devices, a user can directly control the full body motion of an avatar in virtual environments. In addition, using a thirdperson view, in which the user watches himself as an avatar on the screen, the user can sense his own movements and interactions with other characters and objects visually. However, there are still a few fundamental problems. First, it is difficult to realize physical interactions from the environment to the avatar. Second, it is also difficult for the user to walk around virtual environments because the motion capture area is very small compared to the virtual environments. This paper proposes a novel framework to solve these problems. We propose a tracking control framework in which the avatar is controlled so as to track input motion from a motion capture device as well as system generated motion. When an impact is applied to the avatar, the system finds an appropriate reactive motion and controls the weights of two tracking controllers in order to realize realistic and also controllable reactions. In addition, when the user walks in position, the system generates a walking motion for the controller to track. The walking speed and turn angle are also controlled through the user’s walking gestures. Using our framework, the system generates seamless transitions between user controlled motions and system generated motions. In this paper, we also introduce a prototype application including a simplified optical motion capture system

    Emission of Particulate Matter 2.5 (PM2.5) from Sewage Sludge Incinerators in Japan

    Get PDF
    Selected Papers from the 4th European Conference on Sludge Management (ECSM 2014)Because fine particulate matter ≤2.5 µm in diameter (PM2.5) causes health problems, PM2.5 emissions are of concern. However, little research on stationary sources has been conducted. To determine the concentration and filtration behavior of PM2.5, dust was collected from five fluid-bed sewage sludge incinerators (SSIs) sorted by particle size using cascade impactors. The average PM2.5 concentration was 0.00014–4.8 mg/Nm3. The total estimated amount of PM2.5 emissions from the SSIs for all plants in Japan was 0.96–8.9 tons/year. Since the SSIs with dry Electrostatic Precipitators (EP) contributed 75–99% of the total emissions, replacing dry EPs with bag filters would significantly reduce the PM2.5 emissions from SSI
    corecore