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We discuss vacuum decays catalyzed by spherical and horizonless objects and show that an ultra compact 
object could catalyze a vacuum decay around it within the cosmological time. The catalytic effect of a 
horizonless compact object could be more efficient than that of a black hole since in this case there is 
no suppression of the decay rate due to the decrement of its Bekestein entropy. If there exists another 
minimum with AdS vacuum in the Higgs potential at a high energy scale, the abundance of compact 
objects such as monopoles, neutron stars, axion stars, oscillons, Q-balls, black hole remnants, gravastars 
and so on, could be severely constrained. We find that an efficient enhancement of nucleation rate occurs 
when the size of the compact object is comparable to its Schwarzschild radius and the bubble radius.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Compact objects are ubiquitous in high-energy physics as well 
as astrophysics and play significant roles in cosmological history of 
the Universe. To name a few, monopoles [1], Q-balls [2–11], oscil-
lons [12–22], boson stars (including axion stars) [23–38], gravas-
tars [39,40] (see also [41]), neutron stars, black hole (BH) rem-
nants [42,43], and (primordial) BHs [44–54] are examples that have 
been studied extensively in the literature for several decades. Pur-
suing consistency of these objects in cosmology and astrophysics 
is important to construct a realistic particle physics model and is 
complementary to high-energy colliders to find a new physics be-
yond the standard model.

It has been proposed that BHs may be objects catalyzing vac-
uum decays around them [55–65], which was pioneered by His-
cock [66]. The abundance of the catalyzing objects should be small 
enough to avoid the nucleation of AdS vacuum bubble within our 
observable Universe until present. Actually, this is particularly im-
portant in the standard model of particle physics [61,67,68], where 
the Higgs potential could develop a AdS vacuum at a high energy 
scale because of the running of quartic coupling [69–83]. Accord-
ing to their result, even a single BH within our observable Universe 
leads to the bubble nucleation if its mass is small enough.
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One may wonder what property of BHs contributes to the pro-
motion of a vacuum decay around it. Gregory, Moss, and Withers 
found [60,62] that the exponential factor of a vacuum decay rate 
around a BH is determined by two factors, � ∝ e−B+�S , where 
� is the vacuum decay rate, �S is the change of Bekenstein en-
tropy of the BH, and B is an on-shell Euclidean action depending 
on the Euclidean dynamics of a bubble wall. Then they found 
that the decrement of B due to gravity of a BH overwhelms the 
entropy decrement. Although they found an extremely large en-
hancement of bubble nucleation rate around a BH, it has been 
discussed that the main effect comes from the thermal fluctuation 
due to the Hawking radiation [64]. This implies that the nucleation 
rate is overestimated because the same effect generates a ther-
mal potential that tends to stabilize the Higgs at the symmetric 
phase [64,65,84] or because the thermal effect of Hawking radia-
tion should be small for a large bubble. Thus, though the bubble 
nucleation rate is still enhanced around a BH because of the ef-
fect of gravity, it is not so large as expected before. If gravity of a 
BH mainly contributes to the promotion of a vacuum decay, it is 
meaningful to consider the catalyzing effect even around horizon-
less objects. The absence of horizons is equivalent to the absence 
of the suppression factor due to the change of Bekenstein entropy 
e�S , and therefore, horizonless compact objects may be more im-
portant candidates of catalyzing objects for vacuum decays. In this 
manuscript, we discuss such a vacuum decay around a spherical 
horizonless object as a catalyzing one.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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This paper is organized as follows. In Sec. 2.1, we explain the 
formalism to calculate the bubble nucleation rate around a generic 
compact object. We use a Gaussian density function for the ob-
ject as an example to calculate the nucleation rate in Sec. 2.2. We 
will see that the efficient enhancement occurs if the radius of the 
compact object, its Schwarzschild radius, and the radius of the nu-
cleated bubble are of the same order with each other. We then 
discuss a parameter region for a t’Hooft-Polyakov monopole that is 
excluded because of the nucleation of AdS vacuum in Sec. 2.3. In 
Sec. 3, we discuss differences from the bubble nucleation around a 
black hole. We will see that the nucleation rate is more enhanced 
around a horizonless compact object than around a black hole with 
the same total mass. Our conclusions are summarized in Sec. 4.

2. Bubble nucleation around a compact object

2.1. Formalism

We consider a nucleation of a thin wall vacuum bubble around 
a spherical object. If we assume that the system is static, the met-
ric inside and outside of the bubble can be written as

ds2 = −C±(r±)dt2± + D±(r±)dr2± + r2±d�2
2, (1)

where C± and D± are determined by the Einstein equation and 
will be specified later. The quantities associated with the outer and 
inner region are labeled by the suffix “+” and by “−”, respectively.

The thin wall vacuum bubble can be characterized by its en-
ergy density, σ , and pressure, p. The ratio of p to σ , w ≡ p/σ
(equation-of-state parameter), is assumed to be a constant. We 
here choose the scale of radial coordinates r± so that r+ = r− ≡ R
on the wall. A schematic picture showing the vacuum decay pro-
cess we here assume is depicted in Fig. 1.

Introducing the extrinsic curvature on the outer (inner) surface 
of the wall, K (+)

AB (K (−)
AB ), the energy-momentum tensor (EMT) of 

wall, S AB , and the induced metric on the wall, hAB , the dynam-
ics of the thin wall with ξ A = (τ , θ, φ) is described by the Israel 
junction conditions as

K (+)
AB − K (−)

AB = −8πG

(
S AB − 1

2
hAB S

)
, (2)

√
C±D±K (±)

AB = diag

(
−dβ±

dR
, β±R, β±R sin2 θ

)
, (3)

S A
B ≡ diag (−σ , p, p) ,hAB ≡ diag

(
−1, R2, R2 sin2 θ

)
, (4)

where

β± ≡ ε±
√

C± + C±D±(dR/dτ )2, (5)

and τ is the proper time of the wall and ε± is the sign of spa-
tial components of extrinsic curvature. We here simply neglect the 
interaction between the horizonless object and the bubble except 
for their gravitational interaction. The case with such an interac-
tion being taken into account will be discussed elsewhere (see also 
Refs. [85–87] in the context of Q-ball in supersymmetric models 
without taking gravity effects into account).

We are interested in the decay of Higgs vacuum, where the 
metastable vacuum has a negligibly small vacuum energy and the 
true vacuum has a negative vacuum energy ρv < 0. We also in-
troduce a compact object at the origin of the spatial coordinate, 
which modifies the metric because of the nonzero mass density 
ρc(r). For simplicity, we here assume the EMT of the object which 
gives the following static solutions of the Einstein equation:

C± = D−1± = f±(r±) ≡ 1 − 2GM±(r±)/r± + H2±r2±, (6)
Fig. 1. A schematic picture showing a vacuum decay catalyzed by a static and spher-
ical object.

with

H+ = 0, H2− ≡ −8πG

3
ρv, (7)

M±(r±) ≡
r±∫

0

dr̄±4π r̄2±ρ
(±)
c (r̄±). (8)

If we use an arbitrary mass density, ρ(±)
c (r), the compact object 

does not satisfy the static Einstein equation unless an appropriate 
EMT for the chosen ρ(±)

c (r) exists. Although in this case the metric 
(1) cannot be used, we expect that we can use it to capture a qual-
itative result. To be more rigorous, in the Appendix, we calculate 
the vacuum decay rate around a gravastar-like object, which is con-
structed to be (approximately) static. We specify its interior EMT 
and use the metrics consistent with the specified EMT. Then one 
could find that the aforementioned assumption for the metrics, (1), 
does not qualitatively change our results and main conclusions.

Equation (2) now reduces to the following equations

d

dR
(β− − β+) = −8πG (σ/2 + p) , (9)

(β− − β+) = 4πGσ(R)R. (10)

One obtains σ = m1−2w R−2(1+w) by solving (9), where m is the 
typical energy scale of the wall, and we can rewrite (10) as(

dz

dτ ′

)2

+ V (z) = −1, (11)

V (z) ≡ −a+
z

− z2

4

[
�am̄2w−1z2w−1

4π H̄2w+1

+ z2(1+w)m̄2w−1

4π H̄2w+1
− 4π H̄2w+1

z2(1+w)m̄2w−1

]2

≤ 0,

(12)

where we re-defined the following non-dimensional variables and 
parameters:

z ≡ H−R, τ ′ ≡ H−τ , a± ≡ 2GM±H−,

�a ≡ 2G(M+ − M−)H−, m̄ ≡ m/MPl, H̄ ≡ H−/MPl.
(13)

The parameters m̄ and H̄ are the ones in the Planck units MPl =
1/

√
G . Implementing the Wick rotation, τ = −iτE, (11) gives the 

bounce solution that describes the bubble nucleation process. In 
the following, we assume that matter fields forming a compact 
object has no interaction with another matter field which even-
tually undergoes the phase transition. In this case, the transition 
would not change the mass of the object, and therefore, �a = 0, 
that is, M+(R) = M−(R) ≡ M(R), is valid in (12). Even if this 
is not the case, �a = 0 is a good approximation, provided that 
|M+ − M−| � (4π/3)R3|ρv|, for which the first term in the square-
bracket in (12) is negligible compared to the second term.
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The Euclidean action, Bco, can be calculated from the bounce 
solution with the following integration [60]:

Bco = 1

4G

∫
dτE(2R − 6GM + 2GM ′R)

(
β+
f+

− β−
f−

)
. (14)

The transition rate, �D, can be estimated as

�D ∼ R−1
CDL

√
Bco

2π
exp(−Bco), (15)

where we estimate the prefactor by taking a factor of 
√

Bco/2π
for the zero mode associated with the time-translation of the in-
stanton and we use the light crossing time of the bubble, RCDL, as 
a rough estimate of the determinant of fluctuations, which will be 
defined more precisely below.

2.2. Results for Gaussian mass function

As an example, we consider the case where the density distri-
bution of the horizonless object is given by the Gaussian form:

ρc(r) = ρ0e−r2/ξ2
, (16)

where ρ0 and ξ represent the typical mass density and the size of 
the compact object, respectively, and ρc(R) ≡ ρ

(+)
c (R) = ρ

(−)
c (R). 

Motivated by the Higgs vacuum decay, we take H̄ = 10−6, m̄ =
6 × 10−4, and w = −1 throughout this manuscript.1 Here, we 
implicitly assume that the Higgs potential is supplemented by a 
non-renormalizable φ6 term as considered in Ref. [62] so that we 
can use the thin-wall approximation. We also take ξ = 103 M−1

Pl as 
an example.

Effective potentials governing the wall position (V (z)) for the 
above parameters are plotted in Fig. 2-(a). The dashed line rep-
resents the case of Coleman De-Luccia (CDL) tunneling, where 
Mtot/MPl = 0 with Mtot ≡ ∫ ∞

0 dr′4πr′2ρc(r′). In this case, a bubble 
is nucleated at the point P0 i.e. with the radius R � αH−1− ≡ RCDL

for α ≡ 8πGm3/H− � 1 [60,88]. As we increase Mtot/MPl, the ef-
fective potential becomes lower. We plot the cases of Mtot/MPl =
400 (a black solid line), 872.6 (a black dashed-dotted line), and 
952.1 (a blue solid line).

A nucleated vacuum bubble with 0 ≤ Mtot/MPl � 872.6 initially 
has its wall radius between P1 and P0 (black open circles in Fig. 2) 
and would expand soon after its nucleation. A nucleated bub-
ble around the horizonless object with 872.6 � Mtot/MPl � 952.1
would be trapped between P2 and P3, where the gravitational 
force and bubble tension are balanced, and then, it may eventu-
ally tunnel to a larger bubble, whose wall is in between P4 and 
P1. If the mass is larger than or equal to 952.1MPl , one has f+ = 0
(a black filled circle in Fig. 2-(b)), that is, a BH forms.

One finds that the effective potential can be drastically dis-
torted because of the gravitational effect of the horizonless object, 
which makes a bubble wall nucleated around a catalyzing object 
smaller compared to a CDL bubble (P0 in Fig. 2-(a)). The distortion 
of the potential largely enhances the nucleation rate of vacuum 
bubble and the nucleation of bubbles could occur within the cos-
mological time as will be shown in the following.

1 We assume that the absolute value of true-vacuum energy density, ρv, and 
the height of the Higgs potential barrier, V max, are of the order of the GUT 
scale ∼ 10−12 M4

Pl . The vacuum expectation value of the true-vacuum state, φ0, 
is assumed to be φ0 ∼ 10−3 M Pl . This gives H̄ ∼ 10−6 MPl and m̄ = (σ/M3

Pl)
1/3 ∼(

κ
√

V max/M4
Pl × φ0/MPl

)1/3

∼ 6 × 10−4, where the constant κ depends on the de-

tails of the Higgs potential [62] and we here take κ ∼ 0.1.
Fig. 2. The effective potential (a) and f+ (b) for the horizonless object with 
Mtot/MPl = 0 (CDL solution), 400 (a black solid line), 872.6 (a black dashed-dotted 
line), and 952.1 (a blue solid line) and for a BH with Mtot/MPl = 952.1 (a black 
dotted line) are shown.

Fig. 3. A plot of the ratio of the decay rate, �D, to the inverse of the cosmological 
time, �C, as a function of the mass and compactness of the horizonless object. The 
contour of �D = �C (red solid line) and contours of ξ/RCDL (white dashed lines) 
are marked for reference. In the case of c ≤ ccrit � 0.525 (gray shaded region), the 
object inevitably collapses to a BH since a function f+(r) has zero points there.

In Fig. 3, the ratio of the vacuum decay rate, �D, to the inverse 
of the cosmological time, �C ≡ HC � 10−61 MPl, is shown in the 
range of 1 ≤ Mtot/MPl ≤ 15000 and of c ≤ 5, where we define the 
compactness parameter2 as

c ≡ ξ/(2GMtot). (17)

In our setup, we find that the existence of even a single horizonless 
object with Mtot/MPl and c within the region enclosed by the red 
line in the figure (i.e., 103 � Mtot/MPl � 104 and with c � 2) would 
be excluded since a bubble would be nucleated around it within 
the cosmological time.

2 Although there is an ambiguity in the definition of the radius because of the 
thick boundary of the Gaussian mass distribution, this ambiguity just changes the 
scale of c-axis in Fig. 3 and does not affect the result shown there.
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We show the contours of ξ/RCDL as white dashed lines in Fig. 3. 
They indicate that an efficient enhancement occurs only when the 
radius of the nucleated bubble (which is of the same order with 
the CDL radius) is comparable to that of the compact object. An ef-
ficient enhancement also requires a small compactness so that the 
gravity effect is efficient around the dense compact object. There-
fore, we conclude that the bubble nucleation rate is drastically 
enhanced around a compact object if the size of the horizonless 
object is comparable with the radius of CDL bubble and its com-
pactness is of the order of unity.

2.3. Constraint on the abundance of compact objects

The nucleation of the anti-de Sitter vacuum bubble, whose ori-
gin could be the Higgs instability, within the cosmological time is 
obviously conflict with the present Universe not filled by the nega-
tive vacuum energy. It would expand with speeds comparable with 
the light speed soon after its nucleation, which would lead to the 
Universe filled by the negative vacuum energy. Since a compact 
object could be a catalyst for the vacuum decay, we can put the 
constraint on the abundance of horizonless objects in the Universe.

For instance, depending on parameters characterizing magnetic 
monopoles, the monopoles could be ultra compact. Suppose that 
there is a (hidden) non-Abelian gauge field that is spontaneously 
broken by a (hidden) Higgs field. If the vacuum manifold has a 
non-trivial second homotopy group, monopoles arise at the spon-
taneously symmetry breaking. Introducing the vacuum expectation 
value (VEV) of the hidden Higgs field, v , the mass and size of a 
t’Hooft-Polyakov monopole, denoted by Mmono and Rmono, respec-
tively, can be estimated as

Mmono ∼ v/
√

αG (18)

Rmono ∼ (
√

αG v)−1, (19)

where αG is the running gauge coupling constant for the non-
Abelian gauge interaction. Imposing the ultra compact condition, 
c � Rmono/(2GMmono) ∼ 1, one obtains v ∼ MPl and Rmono ∼
�Pl/

√
αG. Therefore, as long as the Higgs potential accommodates a 

second lower minimum due to the Higgs instability, parameter re-
gions which realize v ∼ MPl and RCDL ∼ Rmono ∼ �Pl/

√
αG should 

be excluded in order to be consistent with the present Universe 
not filled by the anti-de Sitter vacuum. Since RCDL = 8πGm3/H2− �
5 × 103, αG should be as small as 3 × 10−8 to nucleate the Higgs 
vacuum bubble.

3. Comparison with the catalyzing effect of black holes

Now we compare our results with the case of bubble nucleation 
around a BH, which has been extensively discussed in the litera-
ture. In Ref. [60], Gregory, Moss, and Withers pointed out that the 
Bekenstein entropy of a BH with mass Mtot may contribute to the 
vacuum decay rates as

�D ∼ R−1
CDL

√
IE

2π
e−IE = R−1

CDL

√
IE

2π
e−Bbh+�S , (20)

Bbh ≡ 1

4G

∮
dτE(2R − 6GMtot)

(
β+
f+

− β−
f−

)
, (21)

where IE is the total Euclidean action and Bbh is the bulk compo-
nent of the on-shell Euclidean action depending on the Euclidean 
dynamics of a vacuum bubble. Contributions from the conical sin-
gularities on the Euclidean manifolds before and after the vacuum 
decay lead to a factor of �S , which is equivalent to the change of 
the Bekenstein entropy of a catalyzing BH.
Fig. 4. The vacuum decay rates around a BH with mass Mtot (a dotted line) and that 
around a horizonless compact object, whose mass is Mtot and compactness is fixed 
with ξ/2GMtot = 1, (a solid line) are shown. Red and black points show the decay 
rate of the CDL solution and a critical static solution, respectively.

Note that even horizonless compact objects can emit Hawking 
radiation (see, e.g., Refs. [89–91]) because of the vacuum polariza-
tion in a strong gravitational field and its thermal effect on the 
Higgs potential may have to be taken into account. The details of 
the Higgs potential are characterized by the parameters (i.e. H̄ , m̄, 
and w) in the thin-wall approximation, and therefore, those pa-
rameters could be affected by such a thermal effect in our setup.3

When a BH efficiently catalyzes the vacuum decay, the size of 
the BH, 2GMtot, is comparable with the CDL bubble radius, RCDL, 
and the prefactor in (20) can be rewritten as (GMtot)

−1√IE/2π , 
which is consistent with the prefactor in Ref. [60]. The Bekenstein 
entropy decreases because of the vacuum decay since the decrease 
of the vacuum energy surrounding the BH makes the area of its 
event horizon smaller. Although the gravity effect is strong around 
a BH, the vacuum decay rate would be suppressed by the change 
of Bekenstein entropy:

�S = π
[

R2
h,− − (2GMtot)

2
]

< 0, (22)

where the horizon radius Rh,− after the bubble nucleation is de-
fined by f−(Rh,−) = 0.

Horizonless compact objects have no Bekenstein entropy, so 
that they could more efficiently catalyze vacuum decays than BHs 
do. We here compare the vacuum decay rate around the horizon-
less compact object, whose mass is Mtot and compactness is fixed 
with c = 1, with that around a BH whose mass is Mtot. The result 
is shown in Fig. 4. Both the BH and horizonless compact object ef-
ficiently catalyze the vacuum decay compared to the CDL solution 
shown as red points. If there were no contribution of Bekenstein 
entropy on the decay rate around the BH, the exponential factor for 
the BH would be larger than that for the horizonless object (blue 
dashed line in Fig. 4-(b)). However, the decay rate with the com-
pact object (black solid line) is larger than that with the BH (black 
dotted line) thanks to the absence of the decrement of Bekenstein 
entropy (red dashed-dotted line).

A bubble nucleated around a BH with Mtot = Mcrit � 1045MPl
is static (black points in Fig. 4) because of the perfect balance be-

3 Although it might be possible that the BH mass changes due to the bubble 
nucleation [60–62,67], it was argued that it could be closely related to the thermal 
excitation of bubble due to the Hawking radiation [64,84].
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tween the gravity of the BH and bubble’s tension. On the other 
hand, there is no well-defined Euclidean solution for a BH with 
Mtot ≥ Mcrit [60].

4. Conclusions

We have discussed a role of a horizonless compact object as a 
catalyst for a vacuum decay. As long as the interaction between a 
bubble and a catalyzing object is negligible, our results do not de-
pend on the details of the object much and its gravity plays an 
essential role in the catalyzing process. The universality of our re-
sult is also discussed in the Appendix. This suggests that one can 
put some constraints on the abundance of various kinds of hori-
zonless compact objects, such as monopoles, Q-balls, Boson stars, 
gravastars, BH remnants, and so on. In particular, the Higgs vac-
uum may decay into an AdS vacuum if there exists even a single 
compact object whose radius is comparable to its Schwarzschild 
radius and the CDL bubble radius. For instance, depending on pa-
rameters characterizing magnetic monopoles, the monopoles could 
be ultra compact. As long as the Higgs potential accommodates a 
second lower minimum due to the Higgs instability, parameter re-
gions which realize the Planck-scale GUT symmetry breaking with 
RCDL ∼ Rmono should be excluded in order to be consistent with 
the present Universe not filled by the anti-de Sitter vacuum. More 
realistic cases may arise for Boson stars, oscillons, and Q-balls. In 
addition, in case that a single compact object is not enough to cat-
alyze the Higgs vacuum to decay into the AdS one, multiple ones 
could do it, which leads to new constraints on the abundance of 
such a compact object.

It is also interesting to note that the catalyzing effect of hori-
zonless objects is more efficient compared to that of BHs since 
there is no suppression of vacuum decay rate due to the decre-
ment of Bekenstein entropies. Therefore, if there had been some 
ultra compact objects in the Universe, they could have played a 
critical role in the cosmological sense.

Finally, we comment on the case where the compact object has 
an interaction with the nucleated bubble, namely, the Higgs field. 
In this case, the mass of the compact object can change due to the 
bubble nucleation. Because of the conservation of energy, the nu-
cleated bubble can use the mass difference of the compact object 
and the nucleation rate can be drastically enhanced. This is simi-
lar to the case of bubble nucleation in a finite temperature plasma, 
where a bubble can use the thermal energy to be excited with a fi-
nite energy. This is also similar to the case for a bubble nucleation 
around a black hole with the thermal effect of Hawking radiation, 
where the mass of black hole changes after the bubble nucleation. 
However, as the thermal effect stabilize the Higgs potential to the 
symmetric phase in these cases, the interaction between the com-
pact object and the Higgs field may lead to an effective potential 
that stabilize the Higgs potential. Still, this results in a more ef-
ficient enhancement for the nucleation rate and is an interesting 
possibility for many particle physics models.

Acknowledgements

Masaki Yamada thanks F. Takahashi for a stimulating dis-
cussion. This work was supported by Grant-in-Aid for JSPS Fel-
low No. 16J01780 (N.O.), JP25287054 (M.Y.), JP15H05888 (M.Y.), 
JP18H04579 (M.Y.), and JP18K18764 (M.Y.).

Appendix A. Static gravastar-like objects

Throughout the main text we assume that the compact object 
is static at least during the nucleation process and the metric is 
given by the static solution (1). This is (approximately) justified 
for most of the realistic situations, like neutron stars, boson stars, 
oscillons, monopoles, and Q-balls, and so on. However, the density 
function ρc(r) as well as the metric functions C± and D± should 
be carefully chosen so that it is a static solution to the Einstein 
equation. In this Appendix, we consider a gravastar-like object to 
show that the result in Fig. 3 does not change qualitatively as long 
as we choose those functions carefully to (approximately) satisfy 
the static equilibrium.

We use the following EMT for the gravastar-like object:

T μ
ν = diag(−ρ(r), p(r), p(r), p(r)), (A.1)

ρ(r) ≡ ρ0
1 − tanh ((r − ξ)/δ)

2
+ ρv = −p(r) (A.2)

with r < R , where T μ
ν is the bubble interior EMT and δ represents 

the thickness of the boundary of the gravastar-like object. When 
δ � ξ , one can use the thin wall approximation and the bubble 
interior energy density, ρ , is written as

ρ(r) �
{
ρ0 + ρv ≡ ρin > 0 ξ > r

ρv < 0 ξ < r < R,
(A.3)

where the energy density of the gravastar-like object ρ0 is con-
stant. Assuming the form of its pressure as p = −ρ , the inner 
metric of the gravastar-like object is given by

g(in)
μν = diag(− f in(rin), f −1

in (rin), r2
in, r2

in sin2 θ), (A.4)

f in(r) ≡ 1 − H2
inr2, (A.5)

where H2
in ≡ (8πG/3)ρin and rin is the radial coordinate inside the 

object and we set its scale so that rin = r− = ξ on the boundary of 
gravastar-like object.

Although the bulk of gravastar-like object has its static metric, 
whether or not its boundary is also static should be determined 
by the Israel junction condition that is available only when the 
thickness of its boundary is smaller than its radius, δ � ξ . In 
the thin wall approximation, the boundary can be characterized 
only by its energy density, σc , and pressure, pc . Introducing the 
equation-of-state parameter, wc ≡ pc/σc , one has the Israel junc-
tion conditions:

βin − β− = 4πGσc(ξ)ξ, (A.6)

d

dξ
(βin − β−) = −8πGσc(ξ) (1/2 + wc) , (A.7)

where βin ≡ εin

√
f in(ξ) + (dξ/dτc)2 and τc is the proper time on 

the boundary of the object. Solving (A.6) and (A.7), one has the 
form of σc(ξ) ≡ m−1−2wc

c ξ−2(1+wc) . Substituting σc(ξ) into (A.6), 
one has(

dzc

dτ ′
c

)2

+ V c(zc) = Ec, (A.8)

V c(zc) ≡ − 4γ 2
c

1 + h2
z2

c − z4wc
c

(
1 − z3

c + γ 2
c

z1+4wc
c

)2

, (A.9)

where we defined the following non-dimensional variables and pa-
rameters:

h ≡ H−/H in, (A.10)

z3
c ≡

(
1 + h2

2GMtot H−

)
H3−ξ3, (A.11)

τ ′
c ≡

√
1 + h2

H−τc, (A.12)

2γc
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Fig. 5. A plot of the effective potential, Vc(zc), with wc = 0.6, γc = 0.1, and h =
10−3.

γ 2
c ≡ H2(1+4wc)/3

−
(4πGm−1−2wc )2

2GMtot

(
1 + h2

2GMtot

)(1+4wc)/3

, (A.13)

Ec ≡ − 4γ 2
c

(2GMtot H−)2/3(1 + h2)1/3
. (A.14)

Now one obtains stable solutions by appropriately choosing the 
parameters. An effective potential, V c(zc), governing the position 
of the boundary is plotted in Fig. 5. One finds a stable and static 
solution (a black filled circle in Fig. 5), at which its radius is 
zc = zmin and Ec = V c(zmin). An effective potential governing the 
dynamics of the boundary before the phase transition is obtained 
just by taking h = 0 in (A.9). Therefore, the effective potential, 
V c(zc), is almost not affected by the phase transition as long as 
h � 1 is hold (see (A.9)). In this case, the gravastar-like object re-
mains almost static even after the bubble nucleation and we can 
safely use the static metric (1) to calculate the bubble nucleation 
rate.

Fixing h(� 1), γc , and wc , one may obtain a static solu-
tion, dV c(zc = zmin)/dzc = 0, and the total mass and size of the 
gravastar-like object are given by

Mtot = 8γ 3
c

2G H−(−V c(zc = zmin))3/2(1 + h2)1/2
, (A.15)

ξ = zmin

H−

(
2GMtot H−

1 + h2

)1/3

, (A.16)

where we used (A.11) and (A.14).

Appendix B. Vacuum decay rate around the gravastar-like object

Here we calculate the on-shell Euclidean action as a function of 
(Mtot, c ≡ ξ/2GMtot). Note that we do not take into account a pa-
rameter region where h ≥ 0.1 to approximately keep the gravastar-
like object static before and after the phase transition. The mass 
function, M(r), in (14) should have the form of

M(r) =
r∫

0

dr′4πr′2ρc(r
′) �

{
(4π/3)r3ρ0 ξ > r

(4π/3)ξ3ρ0 = Mtot ξ < r,
(B.1)

where δ � ξ is hold. This gives the metric on the inner and outer 
surface of the wall:

g(±)
μν = diag(− f±(R), f −1± (R), R2, R2 sin2 θ), (B.2)

with

f+ �
⎧⎨
⎩1 − 2GMtot

R
R > ξ

1 − H2
c R2 R < ξ,

(B.3)

f− �
⎧⎨
⎩1 − 2GMtot

R
+ H2−R2 R > ξ

1 − H2
in R2 R < ξ.

(B.4)
Fig. 6. A plot of the ratio �D/�C as a function of the mass and compactness of the 
gravastar-like object with H̄ = 10−6, δ = 0.01ξ , m̄ = 6 ×10−4, and w = −1. We here 
only take into account a parameter region corresponding to h ≤ 0.1. The contours 
of ξ/RCDL (white dashed lines) are marked for reference.

From (14), (15), (B.3), and (B.4), one can calculate the vacuum 
decay rate. Fig. 6 shows the result of �D/�C. One finds that the 
result shown in Fig. 6 is qualitatively consistent with our conclu-
sion based on the result in Fig. 3. However, the range of values of 
compactness, c, in which �D > �C is satisfied, seems to be sen-
sitive to the configuration of the boundary of a catalyzing object. 
The result in Fig. 6 based on the more concrete set up would be a 
supporting evidence for the universality of our main proposal, that 
is, horizonless objects would catalyze vacuum decays when its size 
is comparable with the size of a CDL bubble and its compactness, 
c ≡ ξ/2GMtot, is of the order of unity, c ∼O(1).
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