12 research outputs found

    Functional Characterization of 21 Rare Allelic CYP1A2 Variants Identified in a Population of 4773 Japanese Individuals by Assessing Phenacetin O-Deethylation

    No full text
    Cytochrome P450 1A2 (CYP1A2), which accounts for approximately 13% of the total hepatic cytochrome content, catalyzes the metabolic reactions of approximately 9% of frequently used drugs, including theophylline and olanzapine. Substantial inter-individual differences in enzymatic activity have been observed among patients, which could be caused by genetic polymorphisms. Therefore, we functionally characterized 21 novel CYP1A2 variants identified in 4773 Japanese individuals by determining the kinetic parameters of phenacetin O-deethylation. Our results showed that most of the evaluated variants exhibited decreased or no enzymatic activity, which may be attributed to potential structural alterations. Notably, the Leu98Gln, Gly233Arg, Ser380del Gly454Asp, and Arg457Trp variants did not exhibit quantifiable enzymatic activity. Additionally, three-dimensional (3D) docking analyses were performed to further understand the underlying mechanisms behind variant pharmacokinetics. Our data further suggest that despite mutations occurring on the protein surface, accumulating interactions could result in the impairment of protein function through the destabilization of binding regions and changes in protein folding. Therefore, our findings provide additional information regarding rare CYP1A2 genetic variants and how their underlying effects could clarify discrepancies noted in previous phenotypical studies. This would allow the improvement of personalized therapeutics and highlight the importance of identifying and characterizing rare variants

    Bile Acid–Drug Interaction via Organic Anion-Transporting Polypeptide 4C1 Is a Potential Mechanism of Altered Pharmacokinetics of Renally Excreted Drugs

    No full text
    Patients with liver diseases not only experience the adverse effects of liver-metabolized drugs, but also the unexpected adverse effects of renally excreted drugs. Bile acids alter the expression of renal drug transporters, however, the direct effects of bile acids on drug transport remain unknown. Renal drug transporter organic anion-transporting polypeptide 4C1 (OATP4C1) was reported to be inhibited by chenodeoxycholic acid. Therefore, we predicted that the inhibition of OATP4C1-mediated transport by bile acids might be a potential mechanism for the altered pharmacokinetics of renally excreted drugs. We screened 45 types of bile acids and calculated the IC50, Ki values, and bile acid–drug interaction (BDI) indices of bile acids whose inhibitory effect on OATP4C1 was >50%. From the screening results, lithocholic acid (LCA), glycine-conjugated lithocholic acid (GLCA), and taurine-conjugated lithocholic acid (TLCA) were newly identified as inhibitors of OATP4C1. Since the BDI index of LCA was 0.278, LCA is likely to inhibit OATP4C1-mediated transport in clinical settings. Our findings suggest that dose adjustment of renally excreted drugs may be required in patients with renal failure as well as in patients with hepatic failure. We believe that our findings provide essential information for drug development and safe drug treatment in clinics

    High throughput LC/ESI-MS/MS method for simultaneous analysis of 20 oral molecular-targeted anticancer drugs and the active metabolite of sunitinib in human plasma

    No full text
    Many types of oral molecular-targeted anticancer drugs are clinically used in cancer genomic medicine. Combinations of multiple molecular-targeted anticancer drugs are also being investigated, expecting to prolong the survival of patients with cancer. Therapeutic drug monitoring of oral molecular-targeted drugs is important to ensure efficacy and safety. A liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) has been used for simultaneous determination of these drugs in human plasma. However, the sensitivity of mass spectrometers and differences in the therapeutic range of drugs have rendered the development of simultaneous LC/ESI-MS/MS methods difficult. In this study, a simultaneous quantitative method for 20 oral molecular-targeted anticancer drugs and the active metabolite of sunitinib was developed based on the results of linear range shifts of the calibration curves using four ion abundance adjustment techniques (collision energy defects, in-source collision-induced dissociation, secondary product ion selected reaction monitoring, and isotopologue selected reaction monitoring). The saturation of the detector for the seven analytes was resolved by incorporating optimal ion abundance adjustment techniques. Furthermore, the reproducibility of this method was confirmed in validation tests, and plasma from patients was measured by this method to demonstrate its usefulness in actual clinical practice. This analytical method is expected to make a substantial contribution to the promotion of personalized medicine in the future
    corecore