480 research outputs found

    Formation of Nanometer-Thick Water Layer at High Humidity on Dynamic Crystalline Material Composed of Multi-Interactive Molecules

    Get PDF
    Crystalline powders self-assembled from interactive discrete molecules reversibly transformed from a porous structure to a 2D one with a nanometer-thick H2O layer by hydration/dehydration. Multi-point weak intermolecular interactions contributed to maintenance of each phase. This structure transformation induced a humidity-dependent ion conductivity change from insulator to 3.4 x 10(-3) S cm(-1).open1122sciescopu

    New approach for synthesis of activated carbon from bamboo

    Get PDF
    Unconventional pretreatment, that is, delignification and the addition of guanidine phosphate, was performed for the synthesis of activated carbon having a high specific surface area from bamboo by physical activation. The values of the specific surface area, total pore volume, and average pore size depended on the amount of added guanidine phosphate and the CO2 activation time. The amount of the added guanidine phosphate under the optimum conditions for the highest specific surface area was much lower than that of the phosphorous acid chemical activator under conventional conditions. The N2 adsorption isotherms of all the samples were type I, which means that micropores were dominant. The pore sizes of the samples in this study were similar to that of the physically-activated carbon. Therefore, the activation process was presumed to be essentially not chemical, but physical. The relation between the yield and the specific surface area improved with the addition of guanidine phosphate. The reason for the improvement may be the change in the reactivity of the carbon material generated during the heating process. The maximum specific surface area was ca. 2000 m2 g−1, which is a high value for a physically-activated carbon

    Heme breakdown and ischemia/reperfusion injury in grafted liver during living donor liver transplantation

    Get PDF
    Living donor liver transplantation (LDLT) requires ischemia/reperfusion (I/R), which can cause early graft injury. However, the detailed mechanism of I/R injury remains unknown. Heme oxygenase-1 (HO-1) is a rate-limiting enzyme in heme catabolism and results in the production of iron, carbon monoxide (CO), and biliverdin IXα. Furthermore, in animals, HO-1 has a protective effect against oxidative stress associated with I/R injury. However, in humans, the molecular mechanism and clinical significance of HO-1 remain unclear. We previously demonstrated that exhaled CO levels increase during LDLT, and postulated that this may indicate I/R injury. In this study, we elucidate the origin of increased exhaled CO levels and the role of HO-1 in I/R injury during LDLT. We studied 29 LDLT donors and recipients each. For investigation of HO-1 gene expression by polymerase chain reaction and HO-1 localization by immunohistological staining, liver biopsies from the grafted liver were conducted twice, once before and once after I/R. Exhaled CO levels and HO-1 gene expression levels significantly increased after I/R. In addition, HO-1 levels significantly increased after I/R in Kupffer cells. Furthermore, we found a significant positive correlation between exhaled CO levels and HO-1 gene expression levels. These results indicated that increased heme breakdown in the grafted liver is the source of increased exhaled CO levels. We also found a significant relationship between HO-1 gene expression levels and alanine aminotransferase (ALT) levels; i.e., the higher the HO-1 gene expression levels, the higher the ALT levels. These results suggest that HO-1-mediated heme breakdown is caused by I/R during LDLT, since it is associated with increased exhaled CO levels and liver damage

    Multi-institutional phase II study on the safety and efficacy of dynamic tumor tracking-stereotactic body radiotherapy for lung tumors

    Get PDF
    Background and purpose: This study aimed to evaluate the safety and efficacy of dynamic tumor tracking-stereotactic body radiotherapy (DTT-SBRT) for lung tumors. Materials and methods: Patients with cStage I primary lung cancer or metastatic lung cancer with an expected range of respiratory motion of ≥10 mm were eligible for the study. The prescribed dose was 50 Gy in four fractions. A gimbal-mounted linac was used for DTT-SBRT delivery. The primary endpoint was local control at 2 years. Results: Forty-eight patients from four institutions were enrolled in this study. Forty-two patients had primary non-small-cell lung cancer, and six had metastatic lung tumors. DTT-SBRT was delivered for 47 lesions in 47 patients with a median treatment time of 28 min per fraction. The median respiratory motion during the treatment was 13.7 mm (range: 4.5–28.1 mm). The motion-encompassing method was applied for the one remaining patient due to the poor correlation between the abdominal wall and tumor movement. The median follow-up period was 32.3 months, and the local control at 2 years was 95.2% (lower limit of the one-sided 85% confidence interval [CI]: 90.3%). The overall survival and progression-free survival at 2 years were 79.2% (95% CI: 64.7%–88.2%) and 75.0% (95% CI: 60.2%–85.0%), respectively. Grade 3 toxicity was observed in one patient (2.1%) with radiation pneumonitis. Grade 4 or 5 toxicity was not observed. Conclusion: DTT-SBRT achieved excellent local control with low incidences of severe toxicities in lung tumors with respiratory motion

    Heme Oxygenase-1 is an Essential Cytoprotective Component in Oxidative Tissue Injury Induced by Hemorrhagic Shock

    Get PDF
    Hemorrhagic shock causes oxidative stress that leads to tissue injuries in various organs including the lung, liver, kidney and intestine. Excess amounts of free heme released from destabilized hemoproteins under oxidative conditions might constitute a major threat because it can catalyze the formation of reactive oxygen species. Cells counteract this by rapidly inducing the rate-limiting enzyme in heme breakdown, heme oxygenase-1 (HO-1), which is a low-molecular-weight stress protein. The enzymatic HO-1 reaction removes heme. As such, endogenous HO-1 induction by hemorrhagic shock protects tissues from further degeneration by oxidant stimuli. In addition, prior pharmacological induction of HO-1 ameliorates oxidative tissue injuries induced by hemorrhagic shock. In contrast, the deletion of HO-1 expression, or the chemical inhibition of increased HO activity ablated the beneficial effect of HO-1 induction, and exacerbates tissue damage. Thus, HO-1 constitutes an essential cytoprotective component in hemorrhagic shock-induced oxidative tissue injures. This article reviews recent advances in understanding of the essential role of HO-1 in experimental models of hemorrhagic shock-induced oxidative tissue injuries with emphasis on the role of its induction in tissue defense

    Partial Discharge Induced Electromagnetic Wave Propagation Analysis and Detection Using UHF Sensor in Transformer

    Get PDF
    This paper deals with optimum UHF sensor design and fabrication suitable for oil-filled transformer as well as the sensor characteristics and sensitivity check. As one promising UHF sensor, we make design of small loop antenna and fabricate it, investigating antenna characteristics and sensitivity in detecting PD in a model transformer.18th International Symposium on High Voltage Engineering, ISH2013, August 25-30, 2013, Soul, Kore

    Anti-influenza virus activity of extracts from the stems of Jatropha multifida Linn. collected in Myanmar

    Get PDF
    Background: To contribute to the development of novel anti-influenza drugs, we investigated the anti-influenza activity of crude extracts from 118 medicinal plants collected in Myanmar. We discovered that extract from the stems of Jatropha multifida Linn. showed anti-influenza activity. J. multifida has been used in traditional medicine for the treatment of various diseases, and the stem has been reported to possess antimicrobial, antimalarial, and antitumor activities. However, the anti-influenza activity of this extract has not yet been investigated. Methods: We prepared water (H2O), ethyl acetate (EtOAc), n-hexane (Hex), and chloroform (CHCl3) extracts from the stems of J. multifida collected in Myanmar, and examined the survival of Madin-Darby canine kidney (MDCK) cells infected with the influenza A (H1N1) virus, and the inhibitory effects of these crude extracts on influenza A viral infection and growth in MDCK cells. Results: The H2O extracts from the stems of J. multifida promoted the survival of MDCK cells infected with the influenza A H1N1 virus. The EtOAc and CHCl3 extracts resulted in similar, but weaker, effects. The H2O, EtOAc, and CHCl3 extracts from the stems of J. multifida inhibited influenza A virus H1N1 infection; the H2O extract possessed the strongest inhibitory effect on influenza infection in MDCK cells. The EtOAc, Hex, and CHCl3 extracts all inhibited the growth of influenza A H1N1 virus, and the CHCl3 extract demonstrated the strongest activity in MDCK cells. Conclusion: The H2O or CHCl3 extracts from the stems of J. multifida collected in Myanmar demonstrated the strongest inhibition of influenza A H1N1 viral infection or growth in MDCK cells, respectively. These results indicated that the stems of J. multifida could be regarded as an anti-influenza herbal medicine as well as a potential crude drug source for the development of anti-influenza compounds
    corecore