68 research outputs found

    Characterization of the Modes of Binding between Human Sweet Taste Receptor and Low-Molecular-Weight Sweet Compounds

    Get PDF
    One of the most distinctive features of human sweet taste perception is its broad tuning to chemically diverse compounds ranging from low-molecular-weight sweeteners to sweet-tasting proteins. Many reports suggest that the human sweet taste receptor (hT1R2–hT1R3), a heteromeric complex composed of T1R2 and T1R3 subunits belonging to the class C G protein–coupled receptor family, has multiple binding sites for these sweeteners. However, it remains unclear how the same receptor recognizes such diverse structures. Here we aim to characterize the modes of binding between hT1R2–hT1R3 and low-molecular-weight sweet compounds by functional analysis of a series of site-directed mutants and by molecular modeling–based docking simulation at the binding pocket formed on the large extracellular amino-terminal domain (ATD) of hT1R2. We successfully determined the amino acid residues responsible for binding to sweeteners in the cleft of hT1R2 ATD. Our results suggest that individual ligands have sets of specific residues for binding in correspondence with the chemical structures and other residues responsible for interacting with multiple ligands

    Modeling Study on a Hydrolytic Mechanism of Class A β-Lactamases

    No full text

    Enhanced Reactivity of Rhizopus oryzae Lipase Displayed on Yeast Cell Surfaces in Organic Solvents: Potential as a Whole-Cell Biocatalyst in Organic Solvents

    No full text
    Immobilization of enzymes on some solid supports has been used to stabilize enzymes in organic solvents. In this study, we evaluated applications of genetically immobilized Rhizopus oryzae lipase displayed on the cell surface of Saccharomyces cerevisiae in organic solvents and measured the catalytic activity of the displayed enzyme as a fusion protein with α-agglutinin. Compared to the activity of a commercial preparation of this lipase, the activity of the new preparation was 4.4 × 10(4)-fold higher in a hydrolysis reaction using p-nitrophenyl palmitate and 3.8 × 10(4)-fold higher in an esterification reaction with palmitic acid and n-pentanol (0.2% H(2)O). Increased enzyme activity may occur because the lipase displayed on the yeast cell surface is stabilized by the cell wall. We used a combination of error-prone PCR and cell surface display to increase lipase activity. Of 7,000 colonies in a library of mutated lipases, 13 formed a clear halo on plates containing 0.2% methyl palmitate. In organic solvents, the catalytic activity of 5/13 mutants was three- to sixfold higher than that of the original construct. Thus, yeast cells displaying the lipase can be used in organic solvents, and the lipase activity may be increased by a combination of protein engineering and display techniques. Thus, this immobilized lipase, which is more easily prepared and has higher activity than commercially available free and immobilized lipases, may be a practical alternative for the production of esters derived from fatty acids

    On the conformation of Phe78 of a chromoprotein antibiotic, neocarzinostatin

    No full text
    A structure of neocarzinostatin, an antitumor chromoprotein antibiotic, has been built using X-ray crystallographic data and NMR data, particularly NOE data observed between the apoprotein and the chromophore. Chemical shift changes of protons of the chromophore upon binding to the apoprotein indicated that the aromatic plane of Phe52 has the conformation almost perpendicular to the C-2C-3 triple bond of the core of the chromophore while Phe78 takes multiple conformations in solution although one of the stable conformations has been assigned for Phe78 in a crystal structure.A model of neocarzinostatin from NMR and X-ray crystallographic data suggested a flexible conformation of the Phe78 residue in solution

    Photoactive ligands probing the sweet taste receptor. Design and synthesis of highly potent diazirinyl D-phenylalanine derivatives

    Get PDF
    Some D-Amino acids such as D-tryptophan and D-phenylalanine are well known as naturally-occurring sweeteners. Photoreactive D-phenylalanine derivatives containing trifluoromethyldiazirinyl moiety at 3- or 4-position of phenylalanine, were designed as sweeteners for functional analysis with photoaffinity labeling. The trifluoromethyldiazirinyl D-phenylalanine derivatives were prepared effectively with chemo-enzymatic methods using L-amino acid oxidase and were found to have potent activity toward the human sweet taste receptor

    Role of a Mutation at Position 167 of CTX-M-19 in Ceftazidime Hydrolysis

    No full text
    CTX-M-19 is a recently identified ceftazidime-hydrolyzing extended-spectrum β-lactamase, which differs from the majority of CTX-M-type β-lactamases that preferentially hydrolyze cefotaxime but not ceftazidime. To elucidate the mechanism of ceftazidime hydrolysis by CTX-M-19, the β-lactam MICs of a CTX-M-19 producer, and the kinetic parameters of the enzyme were confirmed. We reconfirmed here that CTX-M-19 is also stable at a high enzyme concentration in the presence of bovine serum albumin (20 μg/ml). Under this condition, we obtained more accurate kinetic parameters and determined that cefotaxime (k(cat)/K(m), 1.47 × 10(6) s(−1) M(−1)), cefoxitin (k(cat)/K(m), 62.2 s(−1) M(−1)), and aztreonam (k(cat)/K(m), 1.34 × 10(3) s(−1) M(−1)) are good substrates and that imipenem (k(+2)/K, 1.20 × 10(2) s(−1) M(−1)) is a poor substrate. However, CTX-M-18 and CTX-M-19 exhibited too high a K(m) value (2.7 to 5.6 mM) against ceftazidime to obtain their catalytic activity (k(cat)). Comparison of the MICs with the catalytic efficiency (k(cat)/K(m)) of these enzymes showed that some β-lactams, including cefotaxime, ceftazidime, and aztreonam showed a similar correlation. Using the previously reported crystal structure of the Toho-1 β-lactamase, which belongs to the CTX-M-type β-lactamase group, we have suggested characteristic interactions between the enzymes and the β-lactams ceftazidime, cefotaxime, and aztreonam by molecular modeling. Aminothiazole-bearing β-lactams require a displacement of the aminothiazole moiety due to a severe steric interaction with the hydroxyl group of Ser167 in CTX-M-19, and the displacement affects the interaction between Ser130 and the acidic group such as carboxylate and sulfonate of β-lactams

    pKa measurements from nuclear magnetic resonance of tyrosine-150 in class C beta-lactamase.

    No full text
    13C-NMR spectroscopy was used to estimate the p K a values for the Tyr(150) (Y150) residue in wild-type and mutant class C beta-lactamases. The tyrosine residues of the wild-type and mutant lactamases were replaced with (13)C-labelled L-tyrosine ([ phenol -4-(13)C]tyrosine) in order to observe the tyrosine residues selectively. Spectra of the wild-type and K67C mutant (Lys(67)-->Cys) enzyme were compared with the Y150C mutant lactamase spectra to identify the signal originating from Tyr(150). Titration experiments showed that the chemical shift of the Tyr(150) resonance in the wild-type enzyme is almost invariant in a range of 0.1 p.p.m. up to pH 11 and showed that the p K (a) of this residue is well above 11 in the substrate-free form. According to solvent accessibility calculations on X-ray-derived structures, the phenolic oxygen of Tyr(150), which is near the amino groups of Lys(315) and Lys(67), appears to have low solvent accessibility. These results suggest that, in the native enzyme, Tyr(150) in class C beta-lactamase of Citrobacter freundii GN346 is protonated and that when Tyr(150) loses a proton, a proton from Lys(67) would replace it. Consequently, Tyr(150) would be protonated during the entire titration
    corecore