81 research outputs found

    Off-axis vortex beam propagation through classical optical system in terms of Kummer confluent hypergeometric function

    Full text link
    The analytical solution for the propagation of the laser beam with optical vortex through the system of lenses is presented. The optical vortex is introduced into the laser beam (described as Gaussian beam) by spiral phase plate. The solution is general as it holds for the optical vortex of any integer topological charge, the off-axis position of the spiral phase plate and any number of lenses. Some intriguing conclusions are discussed. The higher order vortices are unstable and split under small phase or amplitude disturbance. Nevertheless, we have shown that off-axis higher order vortices are stable during the propagation through the set of lenses described in paraxial approximation, which is untypical behavior. The vortex trajectory registered at image plane due to spiral phase plate shift behaves like a rigid body. We have introduced a new factor which in our beam plays the same role as Gouy phase in pure Gaussian beam.Comment: 28 pages, 8 figure

    Polygonal micro-whirlpools induced in ferrofluids

    Full text link
    We report on the observation of the polygonal whirlpools in the thin layer of ferrofluid under illumination with a laser beam carrying optical vortex and in the presence of a vertical magnetic field. This kind of structures have attracted attention after discovering a hexagonal storm in Saturns atmosphere. Our polygonal whirlpools were created in a closed system (no free surfaces) in micro scale (whirlpool diameter less than 20 micrometers) by the use of holographic optical tweezers. The polygonal shape was changed by varying the magnetic field strength or value of the optical vortex topological charge

    Local Purity Distillation in Quantum Systems: Exploring the Complementarity Between Purity and Entanglement

    Full text link
    Quantum thermodynamics and quantum entanglement represent two pivotal quantum resource theories with significant relevance in quantum information science. Despite their importance, the intricate relationship between these two theories is still not fully understood. Here, we delve into the interplay between entanglement and thermodynamics, particularly in the context of local cooling processes. We introduce and develop the framework of Gibbs-preserving local operations and classical communication. Within this framework, we explore strategies enabling remote parties to effectively cool their local systems to the ground state. Our analysis is centered on scenarios where only a single copy of a quantum state is accessible, with the ideal performance defined by the highest possible fidelity to the ground state achievable under these constraints. We focus on systems with fully degenerate local Hamiltonians, where local cooling aligns with the extraction of local purity. In this context, we establish a powerful link between the efficiency of local purity extraction and the degree of entanglement present in the system, a concept we define as purity-entanglement complementarity. Moreover, we demonstrate that in many pertinent scenarios, the optimal performance can be precisely determined through semidefinite programming techniques. Our findings open doors to various practical applications, including techniques for entanglement detection and estimation. We demonstrate this by evaluating the amount of entanglement for a class of bound entangled states.Comment: 5+4 pages, 4 figure

    On the speed of a test particle inside the Schwarzschild event horizon and other kinds of black holes

    Get PDF
    We present the results of an investigation of the speed of a radially infalling test particle crossing the event horizon of a black hole within a Schwarzschild spacetime. One finds that the speed as measured by a special class of observers, at rest outside the horizon and static inside the horizon, increases when the test particle approaches the horizon but decreases inside the horizon. The corresponding situation regarding black holes possessing both outer and inner horizons is also briefly discussed

    Internal flows and energy circulation in light beams

    Full text link
    We review optical phenomena associated with the internal energy redistribution which accompany propagation and transformations of monochromatic light fields in homogeneous media. The total energy flow (linear-momentum density, Poynting vector) can be divided into spin part associated with the polarization and orbital part associated with the spatial inhomogeneity. We give general description of the internal flows in the coordinate and momentum (angular spectrum) representations for both nonparaxial and paraxial fields. This enables one to determine local densities and integral values of the spin and orbital angular momenta of the field. We analyse patterns of the internal flows in standard beam models (Gaussian, Laguerre-Gaussian, flat-top beam, etc.), which provide an insightful picture of the energy transport. The emphasize is made to the singular points of the flow fields. We describe the spin-orbit and orbit-orbit interactions in the processes of beam focusing and symmetry breakdown. Finally, we consider how the energy flows manifest themselves in the mechanical action on probing particles and in the transformations of a propagating beam subjected to a transverse perturbation.Comment: 50 pages, 21 figures, 173 references. This is the final version of the manuscript (v1) modified in accord to the referee's remarks and with allowance for the recent development. The main changes are: additional discussion of the energy flows in Bessel beams (section 4.1), a lot of new references are added and the Conclusion is shortened and made more accurat

    >

    No full text
    • 

    corecore