45 research outputs found

    A Single Nucleotide Polymorphism within the Acetyl-Coenzyme A Carboxylase Beta Gene Is Associated with Proteinuria in Patients with Type 2 Diabetes

    Get PDF
    It has been suggested that genetic susceptibility plays an important role in the pathogenesis of diabetic nephropathy. A large-scale genotyping analysis of gene-based single nucleotide polymorphisms (SNPs) in Japanese patients with type 2 diabetes identified the gene encoding acetyl-coenzyme A carboxylase beta (ACACB) as a candidate for a susceptibility to diabetic nephropathy; the landmark SNP was found in the intron 18 of ACACB (rs2268388: intron 18 +4139 C > T, p = 1.4×10−6, odds ratio = 1.61, 95% confidence interval [CI]: 1.33–1.96). The association of this SNP with diabetic nephropathy was examined in 9 independent studies (4 from Japan including the original study, one Singaporean, one Korean, and two European) with type 2 diabetes. One case-control study involving European patients with type 1 diabetes was included. The frequency of the T allele for SNP rs2268388 was consistently higher among patients with type 2 diabetes and proteinuria. A meta-analysis revealed that rs2268388 was significantly associated with proteinuria in Japanese patients with type 2 diabetes (p = 5.35×10−8, odds ratio = 1.61, 95% Cl: 1.35–1.91). Rs2268388 was also associated with type 2 diabetes–associated end-stage renal disease (ESRD) in European Americans (p = 6×10−4, odds ratio = 1.61, 95% Cl: 1.22–2.13). Significant association was not detected between this SNP and nephropathy in those with type 1 diabetes. A subsequent in vitro functional analysis revealed that a 29-bp DNA fragment, including rs2268388, had significant enhancer activity in cultured human renal proximal tubular epithelial cells. Fragments corresponding to the disease susceptibility allele (T) had higher enhancer activity than those of the major allele. These results suggest that ACACB is a strong candidate for conferring susceptibility for proteinuria in patients with type 2 diabetes

    Regression of Glomerular and Tubulointerstitial Injuries by Dietary Salt Reduction with Combination Therapy of Angiotensin II Receptor Blocker and Calcium Channel Blocker in Dahl Salt-Sensitive Rats

    No full text
    <div><p>A growing body of evidence indicates that renal tissue injuries are reversible. We investigated whether dietary salt reduction with the combination therapy of angiotensin II type 1 receptor blocker (ARB) plus calcium channel blocker (CCB) reverses renal tissue injury in Dahl salt-sensitive (DSS) hypertensive rats. DSS rats were fed a high-salt diet (HS; 4% NaCl) for 4 weeks. Then, DSS rats were given one of the following for 10 weeks: HS diet; normal-salt diet (NS; 0.5% NaCl), NS + an ARB (olmesartan, 10 mg/kg/day), NS + a CCB (azelnidipine, 3 mg/kg/day), NS + olmesartan + azelnidipine or NS + hydralazine (50 mg/kg/day). Four weeks of treatment with HS diet induced hypertension, proteinuria, glomerular sclerosis and hypertrophy, glomerular podocyte injury, and tubulointerstitial fibrosis in DSS rats. A continued HS diet progressed hypertension, proteinuria and renal tissue injury, which was associated with inflammatory cell infiltration and increased proinflammatory cytokine mRNA levels, NADPH oxidase activity and NADPH oxidase-dependent superoxide production in the kidney. In contrast, switching to NS halted the progression of hypertension, renal glomerular and tubular injuries. Dietary salt reduction with ARB or with CCB treatment further reduced blood pressure and partially reversed renal tissues injury. Furthermore, dietary salt reduction with the combination of ARB plus CCB elicited a strong recovery from HS-induced renal tissue injury including the attenuation of inflammation and oxidative stress. These data support the hypothesis that dietary salt reduction with combination therapy of an ARB plus CCB restores glomerular and tubulointerstitial injury in DSS rats.</p></div
    corecore