47 research outputs found

    Methane Concentration at Heading Faces With Auxiliary Ventilation

    Get PDF
    Three-dimensional airflow velocities at a heading face by a forcing or exhausting auxiliary ventilation system were measured in an actual size model gallery and in an actual mine. There were several stagnated regions near the roof comer, which might have danger of methane accumulation. Airflow velocities by an exhausting system were much smaller than that by a forcing system. The airflow and methane concentrations by a forcing, exhausting, or combined system were examined using a visualization technique by laser light in a reduced scale model. Water was used instead of air and very fine bubbles generated by electrolysis were employed as tracer. The behavior of the bubbles in water is similar to that of methane in the air. Accumulation of bubbles was observed at the roof comer of the face which corresponds to the region that the airflow stagnation was observed in the previous actual size model experiment. The optimal airflow rate through a forcing and exhaust duct and duct end locations to reduce hazard of methane accumulation were investigated for the combined system of ventilation. Experiments on methane accumulation using real methane in the air were also conducted in other reduced scale model

    Robust prognostic prediction model developed with integrated biological markers for acute myocardial infarction

    Get PDF
    Commonly used prediction methods for acute myocardial infarction (AMI) were created before contemporary percutaneous coronary intervention was recognized as the primary therapy. Although several studies have used machine learning techniques for prognostic prediction of patients with AMI, its clinical application has not been achieved. Here, we developed an online application tool using a machine learning model to predict in-hospital mortality in patients with AMI. A total of 2, 553 cases of ST-elevation AMI were assigned to 80% training subset for cross validation and 20% test subset for model performance evaluation. We implemented random forest classifier for the binary classification of in-hospital mortality. The selected best feature set consisted of ten clinical and biological markers including max creatine phosphokinase, hemoglobin, heart rate, creatinine, systolic blood pressure, blood sugar, age, Killip class, white blood cells, and c-reactive protein. Our model achieved high performance: the area under the curve of the receiver operating characteristic curve for the test subset, 0.95: sensitivity, 0.89: specificity, 0.91: precision, 0.43: accuracy, 0.91 respectively, which outperformed common scoring methods. The freely available application tool for prognostic prediction can contribute to risk triage and decision-making in patient-centered modern clinical practice for AMI

    On why the Iron K-shell absorption in AGN is not a signature of the local Warm/Hot Intergalactic Medium

    Full text link
    We present a comparison between the 2001 XMM-Newton and 2005 Suzaku observations of the quasar, PG1211+143 at z=0.0809. Variability is observed in the 7 keV iron K-shell absorption line (at 7.6 keV in the quasar frame), which is significantly weaker in 2005 than during the 2001 XMM-Newton observation. From a recombination timescale of <4 years, this implies an absorber density n>0.004 particles/cm3, while the absorber column is 5e22<N_H <1 1e24 particles/cm2. Thus the sizescale of the absorber is too compact (pc scale) and the surface brightness of the dense gas too high (by 9-10 orders of magnitude) to arise from local hot gas, such as the local bubble, group or Warm/Hot Intergalactic Medium (WHIM), as suggested by McKernan et al. (2004, 2005). Instead the iron K-shell absorption must be associated with an AGN outflow with mildly relativistic velocities. Finally we show that the the association of the absorption in PG1211+143 with local hot gas is simply a coincidence, the comparison between the recession and iron K absorber outflow velocities in other AGN does not reveal a one to one kinematic correlation.Comment: accepted for publication in MNRAS LETTERS. 5 pages, 4 figure

    Cyclin-dependent kinase-specific activity predicts the prognosis of stage I and stage II non-small cell lung cancer

    Get PDF
    BACKGROUND: Lung cancer is one of the leading causes of cancer death worldwide. Even with complete resection, the prognosis of early-stage non-small cell lung cancer is poor due to local and distant recurrence, and it remains unclear which biomarkers are clinically useful for predicting recurrence or for determining the efficacy of chemotherapy. Recently, several lines of evidence have indicated that the enzymatic activity of cyclin-dependent kinases could be a clinically relevant prognostic marker for some cancers. We investigated whether the specific activity of cyclin-dependent kinases 1 and 2 could predict recurrence or death in early non-small cell lung cancer patients. METHODS: Patients with newly diagnosed, pathologically confirmed non-small cell lung cancer were entered into this blinded cohort study. The activity of cyclin-dependent kinases was determined in 171 samples by the C2P® assay, and the results were subjected to statistical analysis with recurrence or death as a clinical outcome. RESULTS: The Cox proportional hazards model revealed that the activity of cyclin-dependent kinase 1, but not 2, was a predictor of recurrence, independent of sex, age, and stage. By contrast, cyclin-dependent kinase 2 activity was a predictor of death, independent of sex and stage. CONCLUSION: This study suggested the possible clinical use of cyclin-dependent kinase 1 as a predictor of recurrence and cyclin-dependent kinase 2 as a predictor of overall survival in early-stage non-small cell lung cancer. Thus, a combination of activity of cyclin-dependent kinases 1 and 2 is useful in decision-making regarding treatment strategies for non-small cell lung cancer after surgery. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2407-14-755) contains supplementary material, which is available to authorized users

    Transcriptionally linked simultaneous overexpression of P450 genes for broad-spectrum herbicide resistance

    Get PDF
    雑草が獲得した最強の除草剤抵抗性メカニズムの解明 --解毒酵素の一斉活性化--. 京都大学プレスリリース. 2023-06-14.Broad-spectrum herbicide resistance (BSHR), often linked to weeds with metabolism-based herbicide resistance, poses a threat to food production. Past studies have revealed that overexpression of catalytically promiscuous enzymes explains BSHR in some weeds; however, the mechanism of BSHR expression remains poorly understood. Here, we investigated the molecular basis of high-level resistance to diclofop-methyl in BSHR late watergrass (Echinochloa phyllopogon) found in the United States, which cannot be solely explained by the overexpression of promiscuous cytochrome P450 monooxygenases CYP81A12/21. The BSHR late watergrass line rapidly produced 2 distinct hydroxylated diclofop acids, only 1 of which was the major metabolite produced by CYP81A12/21. RNA-seq and subsequent reverse transcription quantitative PCR (RT-qPCR)-based segregation screening identified the transcriptionally linked overexpression of a gene, CYP709C69, with CYP81A12/21 in the BSHR line. The gene conferred diclofop-methyl resistance in plants and produced another hydroxylated diclofop acid in yeast (Saccharomyces cerevisiae). Unlike CYP81A12/21, CYP709C69 showed no other herbicide-metabolizing function except for a presumed clomazone-activating function. The overexpression of the 3 herbicide-metabolizing genes was also identified in another BSHR late watergrass in Japan, suggesting a convergence of BSHR evolution at the molecular level. Synteny analysis of the P450 genes implied that they are located at mutually independent loci, which supports the idea that a single trans-element regulates the 3 genes. We propose that transcriptionally linked simultaneous overexpression of herbicide-metabolizing genes enhances and broadens the metabolic resistance in weeds. The convergence of the complex mechanism in BSHR late watergrass from 2 countries suggests that BSHR evolved through co-opting a conserved gene regulatory system in late watergrass

    Spatio-temporal distribution of environmental DNA derived from Japanese sea nettle jellyfish Chrysaora pacifica in Omura Bay, Kyushu, Japan

    Get PDF
    We surveyed the spatial and temporal distribution of Japanese sea nettle jellyfish Chrysaora pacifica in Omura Bay, Japan, using an environmental DNA (eDNA) method. In 2018, the C. pacifica eDNA concentration increased from March?May at all depths. The seasonal pattern of C. pacifica eDNA was consistent with previous reports based on visual observations along the Japanese coast. Thus, the eDNA method might have advantages to follow the seasonal pattern of C. pacifica while being less time-consuming and less laborious compared with traditional methods. The eDNA concentrations tended to reach a maximum near and/or below the pycnocline throughout this study. Therefore, the vertical distribution of C. pacifica medusae may have been restricted by strong pycnocline formation in July and August 2018. However, even with a weak pycnocline, which C. pacifica should be able to swim across, the apparent distribution of C. pacifica eDNA seems to be restricted by the pycnocline. Therefore, the eDNA method cannot, currently, accurately assess the absolute vertical distribution pattern of C. pacifica, especially when a pycnocline is formed

    Nuclear β-catenin and CD44 upregulation characterize invasive cell populations in non-aggressive MCF-7 breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In breast cancer cells, the metastatic cell state is strongly correlated to epithelial-to-mesenchymal transition (EMT) and the CD44<sup>+</sup>/CD24<sup>- </sup>stem cell phenotype. However, the MCF-7 cell line, which has a luminal epithelial-like phenotype and lacks a CD44<sup>+</sup>/CD24<sup>- </sup>subpopulation, has rare cell populations with higher Matrigel invasive ability. Thus, what are the potentially important differences between invasive and non-invasive breast cancer cells, and are the differences related to EMT or CD44/CD24 expression?</p> <p>Methods</p> <p>Throughout the sequential selection process using Matrigel, we obtained MCF-7-14 cells of opposite migratory and invasive capabilities from MCF-7 cells. Comparative analysis of epithelial and mesenchymal marker expression was performed between parental MCF-7, selected MCF-7-14, and aggressive mesenchymal MDA-MB-231 cells. Furthermore, using microarray expression profiles of these cells, we selected differentially expressed genes for their invasive potential, and performed pathway and network analysis to identify a set of interesting genes, which were evaluated by RT-PCR, flow cytometry or function-blocking antibody treatment.</p> <p>Results</p> <p>MCF-7-14 cells had enhanced migratory and invasive ability compared with MCF-7 cells. Although MCF-7-14 cells, similar to MCF-7 cells, expressed E-cadherin but neither vimentin nor fibronectin, β-catenin was expressed not only on the cell membrane but also in the nucleus. Furthermore, using gene expression profiles of MCF-7, MCF-7-14 and MDA-MB-231 cells, we demonstrated that MCF-7-14 cells have alterations in signaling pathways regulating cell migration and identified a set of genes (<it>PIK3R1</it>, <it>SOCS2</it>, <it>BMP7</it>, <it>CD44 </it>and <it>CD24</it>). Interestingly, MCF-7-14 and its invasive clone CL6 cells displayed increased CD44 expression and downregulated CD24 expression compared with MCF-7 cells. Anti-CD44 antibody treatment significantly decreased cell migration and invasion in both MCF-7-14 and MCF-7-14 CL6 cells as well as MDA-MB-231 cells.</p> <p>Conclusions</p> <p>MCF-7-14 cells are a novel model for breast cancer metastasis without requiring constitutive EMT and are categorized as a "metastable phenotype", which can be distinguished from both epithelial and mesenchymal cells. The alterations and characteristics of MCF-7-14 cells, especially nuclear β-catenin and CD44 upregulation, may characterize invasive cell populations in breast cancer.</p

    Study on The Change of Pumpage and Drainage of Mine Water in a Coal Mine

    No full text
    corecore