146 research outputs found

    Seasonal variations in the dynamics of Bowdoin Glacier, northwest Greenland

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IA] 急変する北極気候システム及びその全球的な影響の総合的解明―GRENE北極気候変動研究事業研究成果報告2015―11月19日(木) 国立極地研究所1階交流アトリウ

    Alpha lipoic acid selectively inhibits proliferation and adhesion to fibronectin of v-H-ras-transformed 3Y1 cells

    Get PDF
    Here, we focused on the effects of racemic α-lipoic acid on proliferation and adhesion properties of 3Y1 rat fibroblasts and the v-H-ras-transformed derivative, HR-3Y1-2 cells. Racemic α-lipoic acid inhibited proliferation of HR-3Y1-2 but not 3Y1 cells at 0.3 and 1.0 mM. R-(+)-α-lipoic acid also inhibited proliferation of HR-3Y1-2 cells equivalent to that of racemic α-lipoic acid. In addition, racemic α-lipoic acid decreased intracellular reactive oxygen species levels in HR-3Y1 cells but not 3Y1 cells. Next, we evaluated the effects of racemic α-lipoic acid on cell adhesion to fibronectin. The results indicated that racemic α-lipoic acid decreased adhesive ability of HR-3Y1-2 cells to fibronectin-coated plates. As blocking antibody experiment revealed that β1-integrin plays a key role in cell adhesion in this experimental system, the effects of racemic α-lipoic acid on the expression of β1-integrin were examined. The results indicated that racemic α-lipoic acid selectively downregulated the expression of cell surface β1-integrin expression in HR-3Y1-2 cells. Intriguingly, exogenous hydrogen peroxide upregulated cell surface β1-integrin expression in 3Y1 cells. Taken together, these data suggest that reduction of intracellular reactive oxygen species levels by α-lipoic acid could be an effective means of ameliorating abnormal growth and adhesive properties in v-H-ras transformed cells

    Basophil activation by mosquito extracts in patients with hypersensitivity to mosquito bites

    Get PDF
    Hypersensitivity to mosquito bites (HMB) is a cutaneous disorder belonging to the group of Epstein-Barr virus (EBV)-associated T/natural killer (NK)-cell lymphoproliferative diseases, and is primarily mediated by EBV-infected NK cells. It is characterized by intense local skin reactions accompanied by general symptoms after mosquito bites, and infiltration of EBV-infected NK cells into the bite sites. However, the mechanisms underlying these reactions have not been fully examined. We recently described the activation of circulating basophils by mosquito extracts in vitro in a patient with HMB. To further investigate this finding, we studied four additional patients with HMB. All patients showed typical clinical features of HMB after mosquito bites and they had NK lymphocytosis and high peripheral blood EBV DNA loads. We found evidence of EBV infection in NK cells through in situ hybridization that detected EBV-encoded small RNA-1, and flow cytometry showed HLA-DR expression on almost all NK cells. Basophil activation tests with the extracts of epidemic mosquitoes Culex pipiens pallens and Aedes albopictus showed positive responses to one or both extracts in all samples from patients with HMB, suggesting the presence of mosquito antigen-specific IgE and its binding to basophils. In particular, the extract of Aedes albopictus was able to activate basophils in all available patient samples. These results indicate that basophils and/or mast cells activated by mosquito bites may be involved in initiation and development of severe skin reactions to mosquito bites in HMB. © 2015 The Authors

    Ice mass loss in northwestern Greenland ―Results of the GRENE Greenland project and overview of the ArCS Greenland project―

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IA] 急変する北極気候システム及びその全球的な影響の総合的解明―GRENE北極気候変動研究事業研究成果報告2015―11月19日(木) 国立極地研究所 2階 大会議

    Integrated radiation monitoring and interlock system for the LHD deuterium experiments

    Get PDF
    The Large Helical Device (LHD) successfully started the deuterium experiment in March 2017, in which further plasma performance improvement is envisaged to provide a firm basis for the helical reactor design. Some major upgrades of facilities have been made for safe and productive deuterium experiments. For radiation safety, the tritium removal system, the integrated radiation monitoring system, and the access control system have been newly installed. Each system has new interlock signals that will prevent any unsafe plasma operation or plant condition. Major interlock extensions have been implemented as a part of the integrated radiation monitoring system, which also has an inter-connection to the LHD central operation and control system. The radiation monitoring system RMSAFE (Radiation Monitoring System Applicable to Fusion Experiments) is already operating for monitoring γ(X)-rays in LHD. Some neutron measurements have been additionally applied for the deuterium experiments. The LHD data acquisition system LABCOM can acquire and process 24 h every day continuous data streams. Since γ(X)-ray and neutron measurements require higher availability, the sensors, controllers, data acquisition computers, network connections, and visualization servers have been designed to be duplicated or multiplexed for redundancy. The radiation monitoring displays in the LHD control room have been carefully designed to have excellent visual recognition, and to make users immediately aware of several alerts regarding the dose limits. The radiation safety web pages have been also upgraded to always show both dose rates of γ(X)-rays and neutrons in real time

    Stability and Confinement Studies of High-Performance NBI Plasmas in the Large Helical Device Toward a Steady-State Helical Fusion Reactor

    Get PDF
    Recent progress in plasma performance and the understanding of the related physics in the Large Helical Device is overviewed. The volume-averaged beta value is increased with an increase in the neutral beam injection (NBI) heating power, and it reached 5.0% of the reactor-relevant value. In high-β plasmas, the plasma aspect ratio should be controlled so that the Shafranov shift would be reduced, mainly to suppress transport degradation and the deterioration of the NBI heating efficiency. The operational regime of a high-density plasma with an internal diffusion barrier (IDB) has been extended, and the IDB, which was originally found using the local island divertor, has been realized in the helical divertor configuration. The central density was recorded as high as 1 × 1021 m-3, and the central pressure reached 130 kPa. Based on these high-density plasmas with the IDB, a new ignition scenario has been proposed. This should be a scenario specific to the helical fusion reactor, in which the helical ripple transport would be mitigated. A low-energy positive-NBI system was newly installed for an increase in the direct ion heating power. As a result, the ion temperature (Ti) exceeded 5.2 keV at a density of 1.2 × 1019 m-3 in a hydrogen plasma. Transport analysis shows improvement of ion transport, and the Ti-increase tends to be accompanied by a large toroidal rotation velocity of the order of 50 km/s in the core region. The plasma properties in the extended operational regime are discussed from the perspective of a steady-state helical fusion reactor

    Current Status of Large Helical Device and Its Prospect for Deuterium Experiment

    Get PDF
    Achievement of reactor relevant plasma condition in Helical type magnetic devices and exploration in its related plasma physics and fusion engineering are the aim of the Large Helical Device (LHD) project. In the recent experiments on LHD, we have achieved ion-temperature of 8.1 keV at 1 × 1019 m−3 by the optimization of wall conditioning using long pulse discharge by Ion Cyclotron Heating (ICH). The electron temperature of 10 keV at 1.6 × 1019 m−3 was also achieved by the optimization of Electron Cyclotron Heating (ECH). For further improvement in plasma performance, the upgrade of the Large Helical Device (LHD), including the deuterium experiment, is planned. In this paper, the recent achievements on LHD and the upgrade of LHD are described

    Density Regimes of Complete Detachment and Serpens Mode in LHD

    Get PDF
    In the Large Helical Device (LHD), the hot plasma column shrinks at the high-density regime and complete detachment takes place. Hydrogen volume recombination is observed at complete detachment. This phase isself-sustained under specific experimental conditions and called the Serpens mode (self-regulated plasma edge ‘neath the last-closed-flux-surface). The Serpens mode is achieved after either rapid or slow density ramp up, and either by hydrogen or helium gas puffing. The threshold conditions for complete detachment and the Serpens mode are experimentally documented in the parameter space of heating power and density. The threshold density for the Serpens mode transition increases with ? 0.4 power of the heating power. The total radiation is shown to be not adequate to describe the threshold conditions, since it mainly includes the information of very edge region outside the hot plasma column. The operational density limit in LHD, which is sustainable in steady state, has been extended to 1.7 times as high as the Sudo density limit, by applying pellet injection to the Serpens plasmas

    Overview of transport and MHD stability study: focusing on the impact of magnetic field topology in the Large Helical Device

    Get PDF
    The progress in the understanding of the physics and the concurrent parameter extension in the large helical device since the last IAEA-FEC, in 2012 (Kaneko O et al 2013 Nucl. Fusion 53 095024), is reviewed. Plasma with high ion and electron temperatures (Ti(0) ~ Te(0) ~ 6 keV) with simultaneous ion and electron internal transport barriers is obtained by controlling recycling and heating deposition. A sign flip of the nondiffusive term of impurity/momentum transport (residual stress and convection flow) is observed, which is associated with the formation of a transport barrier. The impact of the topology of three-dimensional magnetic fields (stochastic magnetic fields and magnetic islands) on heat momentum, particle/impurity transport and magnetohydrodynamic stability is also discussed. In the steady state operation, a 48 min discharge with a line-averaged electron density of 1 × 1019 m−3 and with high electron and ion temperatures (Ti(0) ~ Te(0) ~ 2 keV), resulting in 3.36 GJ of input energy, is achieved
    corecore