274 research outputs found

    Trend-based Document Clustering for Sensitive and Stable Topic Detection

    Get PDF
    PACLIC / The University of the Philippines Visayas Cebu College Cebu City, Philippines / November 20-22, 200

    SubPatch: Random kd-tree on a sub-sampled patch set for nearest neighbor field estimation

    Get PDF
    We propose a new method to compute the approximate nearest-neighbors field (ANNF) between image pairs using random kd-tree and patch set sub-sampling. By exploiting image coherence we demonstrate that it is possible to reduce the number of patches on which we compute the ANNF, while maintaining high overall accuracy on the final result. Information on missing patches is then recovered by interpolation and propagation of good matches. The introduction of the sub-sampling factor on patch sets also allows for setting the desired trade off between accuracy and speed, providing a flexibility that lacks in state-of-the-art methods. Tests conducted on a public database prove that our algorithm achieves superior performance with respect to PatchMatch (PM) and Coherence Sensitivity Hashing (CSH) algorithms in a comparable computational time

    Solution structure of multi-domain protein ER-60 studied by aggregation-free SAXS and coarse-grained-MD simulation

    Get PDF
    Multi-domain proteins (MDPs) show a variety of domain conformations under physiological conditions, regulating their functions through such conformational changes. One of the typical MDPs, ER-60 which is a protein folding enzyme, has a U-shape with four domains and is thought to have different domain conformations in solution depending on the redox state at the active centres of the edge domains. In this work, an aggregation-free small-angle X-ray scattering revealed that the structures of oxidized and reduced ER-60 in solution are different from each other and are also different from those in the crystal. Furthermore, structural modelling with coarse-grained molecular dynamics simulation indicated that the distance between the two edge domains of oxidized ER-60 is longer than that of reduced ER-60. In addition, one of the edge domains has a more flexible conformation than the other

    Synthetic magnetic resonance imaging for primary prostate cancer evaluation:Diagnostic potential of a non-contrast-enhanced bi-parametric approach enhanced with relaxometry measurements

    Get PDF
    PURPOSE: Bi-parametric magnetic resonance imaging (bpMRI) with diffusion-weighted images has wide utility in diagnosing clinically significant prostate cancer (csPCa). However, bpMRI yields more false-negatives for PI-RADS category 3 lesions than multiparametric (mp)MRI with dynamic-contrast-enhanced (DCE)-MRI. We investigated the utility of synthetic MRI with relaxometry maps for bpMRI-based diagnosis of csPCa. METHODS: One hundred and five treatment-naïve patients who underwent mpMRI and synthetic MRI before prostate biopsy for suspected PCa between August 2019 and December 2020 were prospectively included. Three experts and three basic prostate radiologists evaluated the diagnostic performance of conventional bpMRI and synthetic bpMRI for csPCa. PI-RADS version 2.1 category 3 lesions were identified by consensus, and relaxometry measurements (T1-value, T2-value, and proton density [PD]) were performed. The diagnostic performance of relaxometry measurements for PI-RADS category 3 lesions in peripheral zone was compared with that of DCE-MRI. Histopathological evaluation results were used as the reference standard. Statistical analysis was performed using the areas under the receiver operating characteristic curve (AUC) and McNemar test. RESULTS: In 102 patients without significant MRI artefacts, the diagnostic performance of conventional bpMRI was not significantly different from that of synthetic bpMRI for all readers (p = 0.11–0.79). The AUCs of the combination of T1-value, T2-value, and PD (T1 + T2 + PD) for csPCa in peripheral zone for PI-RADS category 3 lesions were 0.85 for expert and 0.86 for basic radiologists, with no significant difference between T1 + T2 + PD and DCE-MRI for both expert and basic radiologists (p = 0.29–0.45). CONCLUSION: Synthetic MRI with relaxometry maps shows promise for contrast media-free evaluation of csPCa
    corecore