41 research outputs found

    Mutations in Ran system affected telomere silencing in Saccharomyces cerevisiae

    Get PDF
    The Ran GTPase system regulates the direction and timing of several cellular events, such as nuclear-cytosolic transport, centrosome formation, and nuclear envelope assembly in telophase. To gain insight into the Ran system\u27s involvement in chromatin formation, we investigated gene silencing at the telomere in several mutants of the budding yeast Saccharomyces cerevisiae, which had defects in genes involved in the Ran system. A mutation of the RanGAP gene, rna1-1, caused reduced silencing at the telomere, and partial disruption of the nuclear Ran binding factor, yrb2-Δ2, increased this silencing. The reduced telomere silencing in rna1-1 cells was suppressed by a high dosage of the SIR3 gene or the SIT4 gene. Furthermore, hyperphosphorylated Sir3 protein accumulated in the rna1-1 mutant. These results suggest that RanGAP is required for the heterochromatin structure at the telomere in budding yeast. © 2007 Elsevier Inc. All rights reserved

    Factors that contribute to long-term survival in patients with leukemia not in remission at allogeneic hematopoietic cell transplantation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There has been insufficient examination of the factors affecting long-term survival of more than 5 years in patients with leukemia that is not in remission at transplantation.</p> <p>Method</p> <p>We retrospectively analyzed leukemia not in remission at allogeneic hematopoietic cell transplantation (allo-HCT) performed at our institution between January 1999 and July 2009. Forty-two patients with a median age of 39 years received intensified conditioning (n = 9), standard (n = 12) or reduced-intensity conditioning (n = 21) for allo-HCT. Fourteen patients received individual chemotherapy for cytoreduction during the three weeks prior to reduced-intensity conditioning. Diagnoses comprised acute leukemia (n = 29), chronic myeloid leukemia-accelerated phase (n = 2), myelodysplastic syndrome/acute myeloid leukemia (MDS/AML) (n = 10) and plasma cell leukemia (n = 1). In those with acute leukemia, cytogenetic abnormalities were intermediate (44%) or poor (56%). The median number of blast cells in bone marrow (BM) was 26.0% (range; 0.2-100) before the start of chemotherapy for allo-HCT. Six patients had leukemic involvement of the central nervous system. Stem cell sources were related BM (7%), related peripheral blood (31%), unrelated BM (48%) and unrelated cord blood (CB) (14%).</p> <p>Results</p> <p>Engraftment was achieved in 33 (79%) of 42 patients. Median time to engraftment was 17 days (range: 9-32). At five years, the cumulative probabilities of acute graft-versus-host disease (GVHD) and chronic GVHD were 63% and 37%, respectively. With a median follow-up of 85 months for surviving patients, the five-year Kaplan-Meier estimates of leukemia-free survival rate and overall survival (OS) were 17% and 19%, respectively. At five years, the cumulative probability of non-relapse mortality was 38%. In the univariable analyses of the influence of pre-transplant variables on OS, poor-risk cytogenetics, number of BM blasts (>26%), MDS overt AML and CB as stem cell source were significantly associated with worse prognosis (p = .03, p = .01, p = .02 and p < .001, respectively). In addition, based on a landmark analysis at 6 months post-transplant, the five-year Kaplan-Meier estimates of OS in patients with and without prior history of chronic GVHD were 64% and 17% (p = .022), respectively.</p> <p>Conclusion</p> <p>Graft-versus-leukemia effects possibly mediated by chronic GVHD may have played a crucial role in long-term survival in, or cure of active leukemia.</p

    Parametric Representation of UWB Radar Signatures and Its Physical Interpretation

    No full text

    A Sharply Bent Waveguide with a Microcavity Constructed by an Air-Bridge Type Two-Dimensional Photonic Crystal Slab

    No full text

    Analysis of Transient Scattering by a Metal Cylinder Covered with Inhomogeneous Lossy Material for Nondestructive Testing

    No full text

    Radiolytic one-electron reduction characteristics of tyrosine derivative caged by 2-oxopropyl group

    Get PDF
    We employed X-irradiation to activate a caged amino acid with a 2-oxoalkyl group. We designed and synthesized tyrosine derivative caged by a 2-oxoalkyl group (Tyr(Oxo)) to evaluate its radiolytic one-electron reduction characteristics in aqueous solution. Upon hypoxic X-irradiation, Tyr(Oxo) released a 2-oxopropyl group to form the corresponding uncaged tyrosine. In addition, radiolysis of dipeptides containing Tyr(Oxo) revealed that the efficiency of radiolytic removal of 2-oxopropyl group increased significantly by the presence of neighboring aromatic amino acids

    Radiolytic one-electron reduction characteristics of tyrosine derivative caged by 2-oxopropyl group

    Get PDF
    We employed X-irradiation to activate a caged amino acid with a 2-oxoalkyl group. We designed and synthesized tyrosine derivative caged by a 2-oxoalkyl group (Tyr(Oxo)) to evaluate its radiolytic one-electron reduction characteristics in aqueous solution. Upon hypoxic X-irradiation, Tyr(Oxo) released a 2-oxopropyl group to form the corresponding uncaged tyrosine. In addition, radiolysis of dipeptides containing Tyr(Oxo) revealed that the efficiency of radiolytic removal of 2-oxopropyl group increased significantly by the presence of neighboring aromatic amino acids
    corecore