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Abstract 

We employed X-irradiation to activate a caged amino acid with a 2-oxoalkyl group. We 

designed and synthesized tyrosine derivative caged by a 2-oxoalkyl group (Tyr(Oxo)) to 

evaluate its radiolytic one-electron reduction characteristics in aqueous solution. Upon 

hypoxic X-irradiation, Tyr(Oxo) released a 2-oxopropyl group to form the 

corresponding uncaged tyrosine. In addition, radiolysis of dipeptides containing 

Tyr(Oxo) revealed that the efficiency of radiolytic removal of 2-oxopropyl group 

increased significantly by the presence of neighboring aromatic amino acids. 
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Caged amino acids and proteins, the functions of which can be regulated by external 

triggers, are applied widely to biological research.1-5 The activities of these molecules 

can be blocked by chemical modification, while their intrinsic activities are recovered 

by external stimulation such as photoirradiation6 and enzymatic treatment.4 In view of a 

feature that their functions are easily regulated both temporally and spatially, these 

caged amino acids are useful for studying protein chemistry in biological systems.   

Recently we have proposed caged drugs (prodrugs) that are activated by hypoxic 

X-irradiation.7-11 Our studies illustrated that a 2-oxoalkyl group has an effective 

functionality for caging antitumor drugs such as 5-fluorouracil (5-FU)8,9 and 

5-fluorodeoxyuridine (5-FdUrd),10 and for radiolytic activation of the resultant caged 

drugs. This class of radiation activated caged drugs release the 2-oxoalkyl group by 

reducing hydrated electrons, which are generated as the major active species along with 

hydrogen atoms and hydroxyl radicals upon radiolysis of an aqueous solution. An 

activation mechanism has been proposed by which the 2-oxoalkyl group undergoes 

one-electron reduction by hydrated electrons to form corresponding π* anion radical, 

followed by thermal activation into the σ* anion radical that has a weakened N-C bond 

between the 5-FU unit and the 2-oxoalkyl group and is readily hydrolyzed to release the 

2-oxoalkyl group. In this study, we designed and synthesized an amino acid caged by a 
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2-oxopropyl group on tyrosine (Tyr), which has a high affinity for hydrated electrons.12 

Under hypoxic conditions, radiolytic one-electron reduction of tyrosine derivative 

possessing 2-oxopropyl group (Tyr(Oxo)) resulted exclusively in releasing of 

2-oxopropyl group to recover the corresponding uncaged Tyr. In the case of dipeptides 

bearing Tyr(Oxo), the neighboring amino acid was identified to have a strong influence 

on the overall efficiency of radiolytic one-electron reductive release of the 2-oxopropyl 

group from Tyr(Oxo). 

 

The synthetic procedure of Tyr(Oxo) is outlined in Scheme 1. Coupling of 

N-(tert-butoxycarbonyl)tyrosine methyl ester 1 with α-bromoacetone and deprotection 

of the terminal amino group gave Tyr(Oxo) (3).13 

 

(Scheme 1) 

 

We initially performed one-electron reduction of Tyr(Oxo) by the X-radiolysis of an 

argon-purged aqueous solution containing excess 2-methyl-2-propanol as the scavenger 

of oxidizing hydroxyl radicals.14 Reducing hydrate electrons (eaq
–) are generated as the 

major active species under these radiolysis conditions, in which the yield of reducing 
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hydrogen atoms is much less than those of hydrated electrons and oxidizing hydroxyl 

radicals.15 Figure 1 shows the reaction profiles of the radiolytic reduction of Tyr(Oxo) 

under hypoxic conditions. The appearance of a single new peak in Figure 1 is 

attributable to the formation of uncaged Tyr as confirmed by the overlap injection of 

authentic samples in the HPLC analysis. The G values (the number of molecules 

produced or changed per 1 J of radiation energy absorbed by the reaction system) were 

223 nmol/J for the decomposition of caged Tyr(Oxo) and 130 nmol/J for the formation 

of the corresponding uncaged Tyr.16 These results clearly indicate that the 2-oxopropyl 

group on the amino acid can be similarly removed as in the case of prodrugs.10 

 

(Figure 1) 

 

To assess the effect of molecular oxygen on the radiolysis of Tyr(Oxo), we performed 

similar one-electron reduction under aerobic conditions. In contrast to the hypoxic 

X-radiolysis, the removal of the 2-oxopropyl group to convert Tyr(Oxo) into Tyr 

became considerably less efficient in the aerobic X-radiolysis (Figure 2). The G values 

were estimated as 81 nmol/J for the decomposition of Tyr(Oxo) and 51 nmol/J for the 

formation of Tyr. In view of well-documented evidence that molecular oxygen 
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efficiently inhibits radiolytic reduction due to the trapping of eaq
– to form a superoxide 

anion radical,17 the one-electron reduction of Tyr(Oxo) by eaq
– is likely to occur in a 

hypoxia-selective manner.  

 

(Figure 2) 

 

To identify the effect of the neighboring amino acid on the radiolytic reduction of 

Tyr(Oxo), we compared one-electron reduction reactivity of dipeptides 7–13 comprising 

Tyr(Oxo) and seven types of natural amino acids upon hypoxic or aerobic X-irradiation. 

Dipeptides 7–13 were prepared from 3 (Ac-Tyr-OMe) as outlined in Scheme 2. The 

phenol group of 4 was alkylated by α-bromoacetone, and subsequent hydrolysis gave 

acid 6. Coupling of 6 with the corresponding amino acids furnished the synthesis of 

dipeptides 7–13.18 Figure 3 shows representative reaction profiles of the radiolytic 

reduction of dipeptide Tyr(Oxo)-Gly under hypoxic conditions. Similar to the radiolysis 

of monomeric Tyr(Oxo), reductive removal of the 2-oxopropyl group occurred 

commonly for all dipeptides in a hypoxia-selective manner. The dipeptides 10–13, in 

which Tyr(Oxo) is linked to aromatic amino acids, showed higher G values than 

dipeptides 7–9 with a linkage between Tyr(Oxo) and aliphatic amino acids, as listed in 
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Table 1. Thus, the neighboring amino acid has a marked effect on the one-electron 

reduction of Tyr(Oxo) to generate uncaged Tyr. It has been reported that aromatic amino 

acids are reduced by eaq
– faster than aliphatic amino acids.12 These reduction 

characteristics of eaq
– could be responsible for the accelerated reduction of dipeptides 

bearing aromatic amino acids. It is most likely that capturing of eaq
– by the aromatic 

amino acid residues in the caged dipeptides occurred more efficiently followed by rapid 

intramolecular electron transfer to Tyr(Oxo), thereby resulting in the efficient formation 

of an uncaged dipeptide. 

 

(Scheme 2) 

(Figure 3) 

(Table 1) 

 

In summary, we have demonstrated the activation of caged Tyr possessing a 2-oxoalkyl 

group by X-radiolytic one-electron reduction. Hypoxic X-irradiation caused the efficient 

removal of the 2-oxopropyl group on Tyr(Oxo), whereas the reaction efficiency 

decreased dramatically upon aerobic irradiation. More remarkable was that the 

neighboring aromatic amino acids increased the radiolytic reduction efficiency of 
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Tyr(Oxo), presumably due to their higher electron affinity. These results strongly 

indicate that functions of amino acids and proteins may be regulated by means of 

radiolytic reduction of 2-oxoalkyl group. Further exploration of the one-electron 

reduction of longer and higher-order peptides bearing Tyr(Oxo) by X-radiolysis is in 

progress.    
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calcd for C20H29N2O6 [(M+H)+] 393.2026, found 393.2027.; Tyr(Oxo)-Phe 

(10): mp 107–108 °C; 1H NMR (DMSO-d6, 400 MHz) δ 8.40 (d, J = 7.6 Hz, 

1H), 7.97 (d, J = 8.6 Hz, 1H), 7.24 (m, 5H), 7.12 (d, J = 8.8 Hz, 2H), 6.78 (d, J 

= 8.8 Hz, 2H), 4.73 (s, 2H), 4.47 (m, 2H), 3.58 (s, 3H), 2.95 (m, 3H), 2.61 (m, 

1H), 2.14 (s, 3H), 1.72 (s, 3H); 13C NMR (DMSO-d6, 75.5 MHz) δ 204.3, 

171.7, 171.6, 168.9, 137.0, 130.2, 130.1, 129.0, 128.2, 128.1, 126.5, 114.0, 
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72.1, 53.6, 53.5, 51.8, 36.5, 26.2, 22.4; FAB-MS: m/e 441 [(M+H)+]; HRMS 

calcd. for C24H29N2O6 [(M+H)+] 441.2026, found 441.2012.; Tyr(Oxo)-Tyr 

(11): mp 77–78 °C; 1H NMR (DMSO-d6, 300 MHz) δ 9.21 (s, 1H), 8.32 (d, J = 

7.5 Hz, 1H), 7.99 (d, J = 8.6 Hz, 1H), 7.12 (d, J = 8.6 Hz, 2H), 6.98 (d, J = 8.4 

Hz, 2H), 6.78 (d, J = 8.6 Hz, 2H), 6.65 (d, J = 8.6 Hz, 2H), 4.74 (s, 2H), 4.42 

(m, 2H), 3.57 (s, 3H), 2.89–2.27 (m, 4H), 2.14 (s, 3H), 1.72 (s, 3H); 13C NMR 

(DMSO-d6, 75.5 MHz) δ 204.3, 171.8, 171.5, 168.9, 156.2, 156.0, 130.3, 130.1, 

130.0, 126.9, 115.0, 114.0, 72.1, 53.9, 53.6, 51.7, 36.6, 35.9, 26.2, 22.4; 

FAB-MS: m/e 457 [(M+H)+]; HRMS calcd. for C24H29N2O7  [(M+H)+] 

457.1975, found 457.1981.; Tyr(Oxo)-Trp (12): mp 80–81 °C; 1H NMR 

(DMSO-d6, 300 MHz) δ 10.89 (s, 1H), 8.38 (d, J = 7.3 Hz, 1H), 8.00 (d, J = 

8.6 Hz, 1H), 7.48 (d, J = 7.5 Hz, 1H), 7.33 (d, J = 7.7 Hz, 1H), 7.17–6.94 (m, 

5H), 6.77 (d, J = 8.6 Hz, 2H), 4.74 (s, 2H), 4.51 (m, 2H), 3.56 (s, 3H), 3.12 (m, 

2H), 2.91 (m, 1H), 2.63 (m, 1H), 2.14 (s, 3H), 1.73 (s, 3H); 13C NMR 

(DMSO-d6, 75.5 MHz) δ 204.3, 172.1, 171.6, 169.0, 156.2, 136.0, 130.3, 130.1, 

127.0, 123.7, 120.9, 118.4, 117.9, 113.9, 111.4, 109.2, 72.1, 53.7, 53.0, 51.8, 

36.6, 26.9, 26.2, 22.4; FAB-MS: m/e 480 [(M+H)+]; HRMS calcd. for 

C26H30N3O6 [(M+H)+] 480.2135, found 480.2126.; Tyr(Oxo)-His(1-Me) (13): 
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1H NMR (DMSO-d6, 400 MHz) δ 8.42 (d, J = 7.3 Hz, 1H), 8.07 (d, J = 7.3 Hz, 

1H), 7.13 (d, J = 8.3 Hz, 2H), 6.77 (d, J = 8.3 Hz, 2H), 4.73 (s, 2H), 4.47–4.38 

(2H), 3.58 (s, 3H), 3.56 (s, 3H), 2.96–2.53 (6H), 2.13 (s, 3H), 1.74 (s, 3H) ; 13C 

NMR (DMSO-d6, 100 MHz) δ 204.3, 171.8, 171.5, 169.0, 156.2, 137.3, 136.7, 

130.1, 117.9, 114.0, 79.1, 72.1, 53.8, 52.3, 51.8, 36.4, 32.7, 29.7, 26.2, 22.4; 

FAB-MS: m/e 445 [(M+H)+]; HRMS calcd. for C22H29N4O6 [(M+H)+] 

445.2087, found 445.2089. 

19. We carried out one-electron reduction of 13 in aqueous solution containing 

10% or 20% 2-methyl-2-propanol. We compared one-electron reactivity and 

confirmed that both reactions showed similar profiles. 
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Captions: 

Scheme 1a 
aReagents and conditions: (a) K2CO3, KI, bromoacetone, acetone, reflux, quant.; (b) 
HCl in Et2O, room temperature, 78%. 
 
Scheme 2a 
aReagents and conditions: (a) K2CO3, KI, bromoacetone, acetone, reflux, 77%; (b) 
LiOH, MeOH-H2O, room temperature, 76%; (c) aminoacid methyl ester hydrochloride, 
HBTU, DIEA, THF, room temperature, 7-34% (for 7-12); (d) 1-methylhistidine methyl 
ester hydrochloride, EDCI, triethylamine, DMF, room temperature, 28% (for 13). 
 
Figure 1. HPLC profiles for the one-electron reduction of Tyr(Oxo) (3) (95 μM) upon 
hypoxic X-radiolysis (0, 150, 400 and 700 Gy) of aqueous solution containing 10 mM 
2-methyl-2-propanol. 
 
Figure 2. Decomposition of Tyr(Oxo) (3) (open symbol) and release of Tyr (filled 
symbol) in the hypoxic (circle) or aerobic (triangle) radiolysis of aqueous solution 
containing 10 mM 2-methyl-2-propanol. Each error bar represents the SE calculated 
from three experimental results. 
 
Figure 3. HPLC profiles for the one-electron reduction of Tyr(Oxo)-Gly (7) (100 μM) 
upon hypoxic X-radiolysis (0, 100, 300 and 500 Gy) of aqueous solution containing 10 
mM 2-methyl-2-propanol. 
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Scheme 1a 

 aReagents and conditions: (a) K2CO3, KI, bromoacetone, acetone, reflux, quant.; (b) 
HCl in Et2O, room temperature, 78%. 
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Scheme 2a 

aReagents and conditions: (a) K2CO3, KI, bromoacetone, acetone, reflux, 77%; (b) 
LiOH, MeOH-H2O, room temperature, 76%; (c) aminoacid methyl ester hydrochloride, 
HBTU, DIEA, THF, room temperature, 7-34% (for 7-12); (d) 1-methylhistidine methyl 
ester hydrochloride, EDCI, triethylamine, DMF, room temperature, 28% (for 13). 
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Figure 1. HPLC profiles for the one-electron reduction of Tyr(Oxo) (3) (95 μM) upon 
hypoxic X-radiolysis (0, 150, 400 and 700 Gy) of aqueous solution containing 10 mM 
2-methyl-2-propanol. 
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Figure 2. Decomposition of Tyr(Oxo) (3) (open symbol) and release of Tyr (filled 
symbol) in the hypoxic (circle) or aerobic (triangle) radiolysis of aqueous solution 
containing 10 mM 2-methyl-2-propanol. Each error bar represents the SE calculated 
from three experimental results.  
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Figure 3. HPLC profiles for the one-electron reduction of Tyr(Oxo)-Gly (7) (100 μM) 
upon hypoxic X-radiolysis (0, 100, 300 and 500 Gy) of aqueous solution containing 10 
mM 2-methyl-2-propanol. 
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Table 1.  G-values (nmol/J) for the Decomposition of Tyr(Oxo) (3) and Dipeptides 
Bearing Tyr(Oxo) and the Formation of Corresponding Uncaged Tyr and Dipeptides 
upon X-radiolysis.a 

 Hypoxic Conditions Aerobic Conditions 

 Formation Decomposition Formation Decomposition

Tyr(Oxo)(3) 

Tyr(Oxo)-Gly(7) 

130 

55 

223 

212 

51 

11 

81 

52 

Tyr(Oxo)-Ala(8) 96 232 20 72 

Tyr(Oxo)-Val(9) 72 209 18 83 

Tyr(Oxo)-Phe(10) 155 299 30 45 

Tyr(Oxo)-Tyr(11) 196 258 37 52 

Tyr(Oxo)-Trp(12) 

Tyr(Oxo)-His(1-Me)(13) 

131 

158 

295 

282 

24 

42 

55 

96 

a Aqueous solution of Tyr(Oxo) (3) and dipeptides (95-320 μM) containing excess 
amount of 2-methyl-2-propanol19 were irradiated at ambient temperature with X-ray 
source (5 Gy min-1). 

 

 

 


