16 research outputs found

    液状化細胞診材料を用いた遺伝子解析による腫瘍特異的遺伝子検出感度の検討

    Get PDF
    Liquid-based cytology (LBC) analysis of sputum is a useful diagnostic and prognostic tool for detecting lung cancer. DNA and RNA derived from lung cancer cells can be used for this diagnosis. However, the quality of cytological material is not always adequate for molecular analysis due to the effect of formalin in the commercially available fixation kits. In this study, we examined DNA and RNA extraction methods for LBC analysis with formalin fixation, using lung carcinoma cell lines and sputum. The human non-small cell lung cancer cell lines were fixed with LBC fixation reagents, such as CytoRich red preservative. Quantification of thyroid transcription factor-1 (TTF-1) and actin mRNA, epidermal growth factor receptor (EGFR) DNA in HCC827, H1975, and H1299 cells, and mutation analysis of EGFR in HCC827 and H1975 cells were performed by quantitative PCR (qPCR) and fluorescence resonance energy transfer (FRET)-based preferential homoduplex formation assay (F-PHFA) method, respectively. mRNA and DNA extracted from cell lines using RNA and/or DNA extraction kits for formalin-fixed paraffin-embedded (FFPE) fixed with various LBC solutions were efficiently detected by qPCR. The detection limit of EGFR mutations was at a rate of 5% mutated positive cells in LBC. The detection limit of the EGFR exon 19 deletion in HCC827 was detected in more than 1.5% of the positive cells in sputum. In contrast, the detection limit of the T790M/L858R mutation in H1975 was detected in more than 13% of the positive cells. We also detected EGFR mutations using next generation sequencing (NGS). The detection limit of NGS for EGFR mutation was lower than that of the F-PHFA method. Furthermore, more than 0.1% of positive cells could be cytomorphologically detected. Our results demonstrate that LBC systems are powerful tools for cytopathological and genetic analyses. However, careful attention should be paid to the incidence of false negative results in the genetic analysis of EGFR mutations detected by LBC.博士(医学)・甲第750号・令和2年6月30日© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

    CCR8 leads to eosinophil migration and regulates neutrophil migration in murine allergic enteritis

    Get PDF
    Allergic enteritis (AE) is a gastrointestinal form of food allergy. This study aimed to elucidate cellular and molecular mechanisms of AE using a murine model. To induce AE, BALB/c wild type (WT) mice received intraperitoneal sensitization with ovalbumin (an egg white allergen) plus ALUM and feeding an egg white (EW) diet. Microarray analysis showed enhanced gene expression of CC chemokine receptor (CCR) 8 and its ligand, chemokine CC motif ligand (CCL) 1 in the inflamed jejunum. Histological and FACS analysis showed that CCR8 knock out (KO) mice exhibited slightly less inflammatory features, reduced eosinophil accumulation but accelerated neutrophil accumulation in the jejunums, when compared to WT mice. The concentrations of an eosinophil chemoattractant CCL11 (eotaxin-1), but not of IL-5, were reduced in intestinal homogenates of CCR8KO mice, suggesting an indirect involvement of CCR8 in eosinophil accumulation in AE sites by inducing CCL11 expression. The potential of CCR8 antagonists to treat allergic asthma has been discussed. However, our results suggest that CCR8 blockade may promote neutrophil accumulation in the inflamed intestinal tissues, and not be a suitable therapeutic target for AE, despite the potential to reduce eosinophil accumulation. This study advances our knowledge to establish effective anti-inflammatory strategies in AE treatment.Fil: Blanco-Pérez, Frank. Paul-ehrlich-institut;Fil: Kato, Yoichiro. Tokyo Women's Medical University;Fil: Gonzalez-Menendez, Irene. Universitätsklinikum Tübingen Medizinische Fakultät;Fil: Laiño, Jonathan Emiliano. Paul-ehrlich-institut;Fil: Ohbayashi, Masaharu. Toyohashi Sozo University;Fil: Burggraf, Manja. Paul-ehrlich-institut;Fil: Krause, Maren. Paul-ehrlich-institut;Fil: Kirberg, Jörg. Paul-ehrlich-institut;Fil: Iwakura, Yoichiro. Tokyo University Of Science;Fil: Martella, Manuela. Universitätsklinikum Tübingen Medizinische Fakultät;Fil: Quintanilla-Martinez, Leticia. Universitätsklinikum Tübingen Medizinische Fakultät;Fil: Shibata, Noriyuki. Tokyo Women's Medical University;Fil: Vieths, Stefan. Paul-ehrlich-institut;Fil: Scheurer, Stephan. Paul-ehrlich-institut;Fil: Toda, Masako. Paul-ehrlich-institut; . Tohoku University

    microRNA-345の過剰発現は、MUC1およびTJP2の発現を抑制することにより、膵管腺癌細胞株の浸潤能に影響を及ぼす

    Get PDF
    The majority of pancreatic carcinomas are pancreatic ductal adenocarcinomas (PDAC), and the presence of non-invasive pancreatic intraepithelial neoplasia or intraductal papillary mucinous neoplasm, as an associated lesion, is considered important. These microscopic hyperplastic or grossly papillomatous lesions exhibit varying degrees of morphological atypia and may develop into invasive carcinomas. In this study, we investigated whether mucin-1 (MUC1) is involved in the progression of pancreatic carcinoma and examined the mechanisms by which microRNAs regulate MUC1 expression in vitro. In PDAC cell lines, suppression of MUC1 expression reduced cell proliferation and invasion; PDAC cell lines transfected with an miR-345 precursor suppressed the expression of MUC1, and reduced cell proliferation and invasion. Tight junction protein 2 (TJP2), a putative target of miR-345, is regulated by MUC1. The suppression of TJP2 expression reduced cell proliferation by inducing apoptosis. These results suggest that MUC1 and TJP2, the putative target molecules of miR-345, are critical in maintaining the invasive potential of pancreatic carcinoma cells, and regulating their expression may prevent the progression of non-invasive pancreatic intraductal lesions to invasive carcinomas. This study provides new insights for the development of novel molecular targeted therapies for pancreatic carcinomas.博士(医学)・甲第866号・令和5年3月15

    Intake of Radionuclides in the Trees of Fukushima Forests 1. Field Study

    Get PDF
    The earthquake and tsunami on 11 March 2011 led to a meltdown followed by a hydrogen explosion at the Fukushima–Daiichi nuclear power plant in Japan, causing the dispersal of abundant radionuclides into the atmosphere and ocean. The radionuclides were deposited onto trees and local residences in aerosol or gaseous forms that were partly absorbed by rain or melting snow. Here, we show that the radionuclides attached to the surfaces of trees, in which some radiocesium was incorporated into the xylem through ray cells and through symplastic pathways. The level of incorporated radiocesium varied based on tree species and age because of the ability of radiocesium to attach to the surface of the outer bark. After four years, the radiocesium level in the forest has been decreasing as it is washed out with rainwater into the sea and as it decays over time due to its half-life, but it can also be continuously recycled through leaf tissue, litter, mulch, and soil. As a result, the level of radiocesium was relatively increased in the heartwood and roots of trees at four years after the event. In private forest fields, most trees were left as afforested trees without being used for timber, although some trees were cut down. We discuss an interdisciplinary field study on the immediate effects of high radiation levels upon afforested trees in private forest fields

    Overexpression of microRNA-345 Affects the Invasive Capacity of Pancreatic Ductal Adenocarcinoma Cell Lines by Suppressing MUC1 and TJP2 Expression

    No full text
    The majority of pancreatic carcinomas are pancreatic ductal adenocarcinomas (PDAC), and the presence of non-invasive pancreatic intraepithelial neoplasia or intraductal papillary mucinous neoplasm, as an associated lesion, is considered important. These microscopic hyperplastic or grossly papillomatous lesions exhibit varying degrees of morphological atypia and may develop into invasive carcinomas. In this study, we investigated whether mucin-1 (MUC1) is involved in the progression of pancreatic carcinoma and examined the mechanisms by which microRNAs regulate MUC1 expression in vitro. In PDAC cell lines, suppression of MUC1 expression reduced cell proliferation and invasion; PDAC cell lines transfected with an miR-345 precursor suppressed the expression of MUC1, and reduced cell proliferation and invasion. Tight junction protein 2 (TJP2), a putative target of miR-345, is regulated by MUC1. The suppression of TJP2 expression reduced cell proliferation by inducing apoptosis. These results suggest that MUC1 and TJP2, the putative target molecules of miR-345, are critical in maintaining the invasive potential of pancreatic carcinoma cells, and regulating their expression may prevent the progression of non-invasive pancreatic intraductal lesions to invasive carcinomas. This study provides new insights for the development of novel molecular targeted therapies for pancreatic carcinomas.博士(医学)・甲第866号・令和5年3月15日© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).identifier:Applied Sciences Vol.12 No.11 Article No.5351 (2022 May)identifier:http://ginmu.naramed-u.ac.jp/dspace/handle/10564/4098identifier:Applied Sciences, 12(11): Article No.535

    Intake of Radionuclides in the tree of Fukushima Forests 2. Study of radiocesium flow to poplar seedlings as a model tree

    Get PDF
    After the nuclear power plant accident in Fukushima, radionuclides were deposited over a large area of local forest. However, almost nothing is known about radionuclide infiltration into trees. Here, we used poplar seedlings as a model to show that radiocesium can enter directly into leaves and bark, moving via ray cells through the symplastic pathways to the xylem and concentrating around the meristems, cork, and vascular cambium. During induced potassium incorporation and reduced seasonal growth, the radiocesium in the meristems of stems mainly passes into abscission tissues such as leaves and heartwood. There is no turnover of radiocesium after it enters the heartwood

    NACC1, as a Target of MicroRNA-331-3p, Regulates Cell Proliferation in Urothelial Carcinoma Cells

    No full text
    The nucleus accumbens-associated protein 1 (NACC1) is a transcription factor constitutively expressed in the urothelium, where it regulates cell growth, senescence, autophagy, and epithelial-mesenchymal transition. microRNA (miRNA) constitutes a class of small non-coding RNAs which are involved in cell proliferation, differentiation, and progression of tumors. miRNAs and their target molecules are utilized for molecular diagnosis of urothelial carcinoma. NACC1 is one of several putative target molecules of miR-331-3p, and is associated with cell proliferation in cancers such as prostate and cervical cancer. Functional experiments involving miR-331-3p and its target molecule NACC1 were conducted using the urothelial carcinoma (UC) cell lines, T24, UMUC6, and KU7. Furthermore, quantitative reverse transcription polymerase chain reaction and immunostaining were performed to evaluate the expression of NACC1 in UC derived from transurethral resection of bladder tumor (TUR-Bt) specimens. The methane thiosulfonate (MTS) assay revealed that cell proliferation was significantly reduced after transient transfection of miR-331-3p precursor and/or NACC1 siRNA in UC cells. Cell senescence via cell cycle arrest at the G1 phase was induced by NACC1 inhibition. On the other hand, suppression of NACC1 induced cell migration and invasion abilities. Immunohistochemical analysis of TUR-Bt specimens revealed that over 70% of UC cells presented strongly positive results for NACC1. In contrast, normal urothelial cells were weakly positive for NACC1. It was also found that NACC1 expression was lower in invasive UC cells than in non-invasive UC cells. Loss of NACC1 induced vessel invasion in invasive UC tissues. The present results indicate that NACC1 regulated by miR-331-3p contributes to cell proliferation, and is involved in cell migration and invasion. This suggests that NACC1 can serve as a potential target molecule for the prediction and prognosis of UC, and can contribute to effective treatment strategies
    corecore