109 research outputs found

    Fifteen Marseilleviruses Newly Isolated From Three Water Samples in Japan Reveal Local Diversity of Marseilleviridae

    Get PDF
    The family Marseilleviridae, defined as a group of icosahedral double-stranded DNA viruses with particle size of approximately 250 nm and genome size of 350–380 kbp, belongs to the nucleo-cytoplasmic family of large DNA viruses. The family Marseilleviridae is currently classified into lineages A–E. In this study, we isolated 12 or 15 new members of the family Marseilleviridae from three sampling locations in Japan. Molecular phylogenetic analysis of the MCP genes showed that the new viruses could be further classified into three groups, hokutoviruses, kashiwazakiviruses, and kyotoviruses. Hokutoviruses were closely related to lineage B, kyotoviruses were related to lineage A, and kashiwazakiviruses were also classified into lineage B but a new putative subgroup of lineage B, revealing the diversity of this lineage. Interestingly, more than two viruses with slightly different MCP genes were isolated from a single water sample from a single location, i.e., two hokutoviruses and one kashiwazakivirus were isolated from a small reservoir, five kashiwazakiviruses from the mouth of a river, and five kyotoviruses from fresh water of a river, suggesting that several milliliters of water samples contain several types of giant viruses. Amoeba cells infected with hokutoviruses or kashiwazakiviruses exhibited a “bunch” formation consisting of normal and infected cells similarly to a tupanvirus, whereas cells infected with kyotoviruses or tokyovirus did not. These results suggest the previously unrecognized local diversity of the family Marseilleviridae in aquatic environments

    Medusavirus, a Novel Large DNA Virus Discovered from Hot Spring Water

    Get PDF
    ヒストン遺伝子を全セット持つ巨大ウイルスの発見 --DNA関連遺伝子のウイルス起源に新たな証拠--. 京都大学プレスリリース. 2019-02-08.Recent discoveries of new large DNA viruses reveal high diversity in their morphologies, genetic repertoires, and replication strategies. Here, we report the novel features of medusavirus, a large DNA virus newly isolated from hot spring water in Japan. Medusavirus, with a diameter of 260 nm, shows a T=277 icosahedral capsid with unique spherical-headed spikes on its surface. It has a 381-kb genome encoding 461 putative proteins, 86 of which have their closest homologs in Acanthamoeba, whereas 279 (61%) are orphan genes. The virus lacks the genes encoding DNA topoisomerase II and RNA polymerase, showing that DNA replication takes place in the host nucleus, whereas the progeny virions are assembled in the cytoplasm. Furthermore, the medusavirus genome harbored genes for all five types of histones (H1, H2A, H2B, H3, and H4) and one DNA polymerase, which are phylogenetically placed at the root of the eukaryotic clades. In contrast, the host amoeba encoded many medusavirus homologs, including the major capsid protein. These facts strongly suggested that amoebae are indeed the most promising natural hosts of medusavirus, and that lateral gene transfers have taken place repeatedly and bidirectionally between the virus and its host since the early stage of their coevolution. Medusavirus reflects the traces of direct evolutionary interactions between the virus and eukaryotic hosts, which may be caused by sharing the DNA replication compartment and by evolutionarily long lasting virus-host relationships. Based on its unique morphological characteristics and phylogenomic relationships with other known large DNA viruses, we propose that medusavirus represents a new family, Medusaviridae

    Distribution of Synthetic Populations of Japan for Social Scientists and Social Simulation Researchers

    Full text link
    Murata T., Harada T., Wa M.I., et al. Distribution of Synthetic Populations of Japan for Social Scientists and Social Simulation Researchers. Proceedings - International Conference on Machine Learning and Cybernetics 2019-July (2019); https://doi.org/10.1109/ICMLC48188.2019.8949245.In this paper, we describe how synthesized populations are essential in real-scale social simulations (RSSS), and the current situation of the population synthesis for whole populations in Japan. RSSS is simulations using the real number of populations or households in social simulations. This paper describes how we have completed to synthesize multiple sets of populations based on the statistics of each local government in Japanese national census in 2000,2005,2010 and 2015. We have started to distribute those multiple sets of the synthesized populations for researchers of RSSSs in Japan. In distributing the synthesized populations, we should set some regulations in order to protect personal or private information in the synthesized populations

    Distribution system for japanese synthetic population data with protection level

    Full text link
    Murata T., Date S., Goto Y., et al. Distribution system for japanese synthetic population data with protection level. Proceedings - International Conference on Machine Learning and Cybernetics 2020-December, 187 (2020); https://doi.org/10.1109/ICMLC51923.2020.9469550.In this paper, we introduce a distribution system of synthesized data of Japanese population using Interdisciplinary Large-scale Information Infra-structures in Japan. Synthetic population is synthesized based on the statistics of the census that are conducted by the government and publicly released. Therefore, the synthesized data have no privacy data. However, it is easy to estimate the compositions of households, working status in a certain area from the synthetic population. Therefore, we currently distribute the synthesized data only for public or academic purposes. For academic purposes, it is important to encourage scholars or researchers to use a large-scale data of households, we define protection levels for the attributes in the synthetic populations. According to the protection levels, we distribute the data with proper attributes to those who try to use them. We encourage researchers to use the synthetic populations to be familiar to large-scale data processing

    Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment

    Get PDF
    Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression

    Clinical characteristics, management strategies and outcomes of patients with recurrent venous thromboembolism in the real world

    Get PDF
    There is a paucity of data on management strategies and clinical outcomes after recurrent venous thromboembolism (VTE). In a multicenter registry enrolling 3027 patients with acute symptomatic VTE, the current study population was divided into the following 3 groups: (1) First recurrent VTE during anticoagulation therapy (N = 110); (2) First recurrent VTE after discontinuation of anticoagulation therapy (N = 116); and (3) No recurrent VTE (N = 2801). Patients with first recurrent VTE during anticoagulation therapy more often had active cancer (45, 25 and 22%, P < 0.001). Among 110 patients with first recurrent VTE during anticoagulation therapy, 84 patients (76%) received warfarin at recurrent VTE with the median prothrombin time-international normalized ratio (PT-INR) value at recurrent VTE of 1.6, although patients with active cancer had a significantly higher median PT-INR value at recurrent VTE compared with those without active cancer (2.0 versus 1.4, P < 0.001). Within 90 days after recurrent VTE, 23 patients (20.9%) during anticoagulation therapy and 24 patients (20.7%) after discontinuation of anticoagulation therapy died. Active cancer was a major cause of recurrent VTE during anticoagulation therapy as a patient-related factor, while sub-optimal intensity of anticoagulation therapy was a major cause of recurrent VTE during anticoagulation therapy as a treatment-related factor, particularly in patients without active cancer

    ICR News 2021

    Get PDF
    This Annual Report covers from 1 January to 31 December 202
    corecore