60 research outputs found

    NHI- and NHC-supported Al(III) hydrides for amine–borane dehydrocoupling catalysis

    Get PDF
    The catalytic dehydrocoupling of amine–boranes has recently received a great deal of attention due to its potential in hydrogen storage applications. The use of aluminum catalysts for this transformation would provide an additional cost-effective and sustainable approach towards the hydrogen economy. Herein, we report the use of both N-heterocyclic imine (NHI)- and carbene (NHC)-supported Al(III) hydrides and their role in the catalytic dehydrocoupling of Me2NHBH3. Differences in the σ-donating ability of the ligand class resulted in a more stable catalyst for NHI-Al(III) hydrides, whereas a deactivation pathway was found in the case of NHC-Al(III) hydrides

    Nonacyclic Ladder Silsesquioxanes and Spectral Features of Ladder Polysilsesquioxanes

    Get PDF
    Laddersiloxanes, that is, ladder silsesquioxanes with defined structures, could be obtained by stepwise synthesis starting from cyclic silanols. These compounds were shown to have high thermal stability. As an extension of the previous work, the first nonacyclic ladder silsesquioxanes were synthesized by the reaction of bicyclic silanol with tricyclic tetrachloride, which were obtained from cyclic silanols. The structure was confirmed by spectral measurements, and the spectral features of a series of ladder polysilsesquioxanes with determined structures were analyzed

    Thiolated Janus silsesquioxane tetrapod : new precursors for functional materials

    Get PDF
    Herein, we report synthetic strategies for the development of a bifunctional Janus T4 tetrapod (Janus ring), in which the orthogonal silsesquioxane and organic faces are independently functionalized. An all‐cis T4 tetrasilanolate was functionalized to introduce thiol moieties on the silsesquioxane face and naphthyl groups on the organic face to introduce luminescent and self‐or‐ ganization properties. The stepwise synthesis conditions required to prepare such perfectly defined oligomers via a suite of well‐defined intermediates and to avoid polymerization or reactions over all eight positions of the tetrapod are explored via 29Si, 13C and 1H NMR, FTIR and TOF‐ESI mass spectroscopy. To the best of our knowledge, this is one of the few reports of Janus T4 tetrapods, with different functional groups located on both faces of the molecule, thus expanding the potential range of applications for these versatile precursors

    A simple and Useful predictive Assay for evaluating the Quality of Isolated Hepatocytes for Hepatocyte transplantation

    Get PDF
    Abstract No optimal assay for assessing isolated hepatocytes before hepatocyte transplantation (HTx) has been established, therefore reliable and rapid assays are warranted. Isolated rat hepatocytes were dipped in a water bath (necrosis model), and were also cultured with Okadaic acid (apoptosis model) or vehicle, followed by cellular assessment including trypan blue exclusion (TBE) viability, ADP /ATP ratio, plating efficiency (PE), DNA quantity and ammonia elimination. Hepatocytes were transplanted into the liver of analbuminemic rats, subsequently engraftment was assessed by serum albumin and the histology of transplanted grafts. In the necrosis model, the ADP/ATP ratio was strongly and negatively correlated with the TBE (R2 = 0.559, P < 0.001). In the apoptosis model, the ADP/ATP ratio assay, PE, DNA quantification and an ammonia elimination test clearly distinguished the groups (P < 0.001, respectively). The ADP/ATP ratio, PE and DNA quantity were well-correlated and the ammonia elimination was slightly correlated with the transplant outcome. TBE could not distinguish the groups and was not correlated with the outcome. The ADP/ATP ratio assay predicted the transplant outcome. PE and DNA quantification may improve the accuracy of the retrospective (evaluations require several days) quality assessment of hepatocytes. The ADP/ATP ratio assay, alone or with a short-term metabolic assay could improve the efficiency of HTx

    Silsesquioxane-Based Triphenylamine-Linked Fluorescent Porous Polymer for Dyes Adsorption and Nitro-Aromatics Detection

    No full text
    In order to enrich hybrid materials, a novel fluorescent silsesquioxane-based polymer (denoted as PCS-OTS) was synthesized by Friedel-Crafts reaction starting from octavinylsilsesquioxane (OVS) with triphenylamine-functionalized silsesquioxane monomer (denoted as OTS) with AlCl3 as catalyst. PCS-OTS possessed a high surface area of 816 m2/g and a unique bimodal pore structure. The triphenylamine unit endowed PCS-OTS with excellent luminescence, which made it act as a sensitive chemical sensor and detect p-nitrophenol with high sensitivity (KSV = 81,230 M−1). Moreover, PCS-OTS can significantly remove dyes, and the respective adsorption capacity for Rhodamine B (RB), Congo red (CR) and Methyl Orange (MO) is 1935, 1420 and 155 mg/g. Additionally, it could simultaneously remove multiple dyes from water by simple filtration and be easily regenerated. This hybrid porous polymer can be a good choice for water treatment
    corecore