160 research outputs found
Alkane inducible proteins in Geobacillus thermoleovorans B23
<p>Abstract</p> <p>Background</p> <p>Initial step of β-oxidation is catalyzed by acyl-CoA dehydrogenase in prokaryotes and mitochondria, while acyl-CoA oxidase primarily functions in the peroxisomes of eukaryotes. Oxidase reaction accompanies emission of toxic by-product reactive oxygen molecules including superoxide anion, and superoxide dismutase and catalase activities are essential to detoxify them in the peroxisomes. Although there is an argument about whether primitive life was born and evolved under high temperature conditions, thermophilic archaea apparently share living systems with both bacteria and eukaryotes. We hypothesized that alkane degradation pathways in thermophilic microorganisms could be premature and useful to understand their evolution.</p> <p>Results</p> <p>An extremely thermophilic and alkane degrading <it>Geobacillus thermoleovorans </it>B23 was previously isolated from a deep subsurface oil reservoir in Japan. In the present study, we identified novel membrane proteins (P16, P21) and superoxide dismutase (P24) whose production levels were significantly increased upon alkane degradation. Unlike other bacteria acyl-CoA oxidase and catalase activities were also increased in strain B23 by addition of alkane.</p> <p>Conclusion</p> <p>We first suggested that peroxisomal β-oxidation system exists in bacteria. This eukaryotic-type alkane degradation pathway in thermophilic bacterial cells might be a vestige of primitive living cell systems that had evolved into eukaryotes.</p
Cleavage of a DNA–RNA–DNA/DNA chimeric substrate containing a single ribonucleotide at the DNA–RNA junction with prokaryotic RNases HII
AbstractWe have analyzed the cleavage specificities of various prokaryotic Type 2 ribonucleases H (RNases H) on chimeric DNA–RNA–DNA/DNA substrates containing one to four ribonucleotides. RNases HII from Bacillus subtilis and Thermococcus kodakaraensis cleaved all of these substrates to produce a DNA segment with a 5′-monoribonucleotide. Consequently, these enzymes cleaved even the chimeric substrate containing a single ribonucleotide at the DNA–RNA junction (5′-side of the single ribonucleotide). In contrast, Escherichia coli RNase HI and B. subtilis RNase HIII did not cleave the chimeric substrate containing a single ribonucleotide. These results suggest that bacterial and archaeal RNases HII are involved in excision of a single ribonucleotide misincorporated into DNA
A unique DNase activity shares the active site with ATPase activity of the RecA/Rad51 homologue (Pk-REC) from a hyperthermophilic archaeon
AbstractA RecA/Rad51 homologue from Pyrococcus kodakaraensis KOD1 (Pk-REC) is the smallest protein among various RecA/Rad51 homologues. Nevertheless, Pk-Rec is a super multifunctional protein and shows a deoxyribonuclease activity. This deoxyribonuclease activity was inhibited by 3 mM or more ATP, suggesting that the catalytic centers of the ATPase and deoxyribonuclease activities are overlapped. To examine whether these two enzymatic activities share the same active site, a number of site-directed mutations were introduced into Pk-REC and the ATPase and deoxyribonuclease activities of the mutant proteins were determined. The mutant enzyme in which double mutations Lys-33 to Ala and Thr-34 to Ala were introduced, fully lost both of these activities, indicating that Lys-33 and/or Thr-34 are important for both ATPase and deoxyribonuclease activities. The mutation of Asp-112 to Ala slightly and almost equally reduced both ATPase and deoxyribonuclease activities. In addition, the mutation of Glu-54 to Gln did not seriously affect the ATPase, deoxyribonuclease, and UV tolerant activities. These results strongly suggest that the active sites of the ATPase and deoxyribonuclease activities of Pk-REC are common. It is noted that unlike Glu-96 in Escherichia coli RecA, which has been proposed to be a catalytic residue for the ATPase activity, the corresponding residual Glu-54 in Pk-REC is not involved in the catalytic function of the protein
Structure of RadB recombinase from a hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1: an implication for the formation of a near-7-fold helical assembly
The X-ray crystal structure of RadB from Thermococcus kodakaraensis KOD1, an archaeal homologue of the RecA/Rad51 family proteins, have been determined in two crystal forms. The structure represents the core ATPase domain of the RecA/Rad51 proteins. Two independent molecules in the type 1 crystal were roughly related by 7-fold screw symmetry whereas non-crystallographic 2-fold symmetry was observed in the type 2 crystal. The dimer structure in the type 1 crystal is extended to construct a helical assembly, which resembles the filamentous structures reported for other RecA/Rad51 proteins. The molecular interface in the type 1 dimer is formed by facing a basic surface patch of one monomer to an acidic one of the other. The empty ATP binding pocket is located at the interface and barely concealed from the outside similarly to that in the active form of the RecA filament. The model assembly has a positively charged belt on one surface bordering the helical groove suitable for facile binding of DNA. Electron microscopy has revealed that, in the absence of ATP and DNA, RadB forms a filament with a similar diameter to that of the hypothetical assembly, although its helical properties were not confirmed
Isolation of TBP-interacting protein (TIP) from a hyperthermophilic archaeon that inhibits the binding of TBP to TATA-DNA
AbstractWe have isolated TBP (TATA-binding protein)-interacting protein (TIP) from cell lysates of a hyperthermophilic archaeon, Pyrococcus kodakaraensis KOD1, by affinity chromatography with TBP-agarose. Based on the internal amino acid sequence information, PCR primers were synthesized and used to amplify the gene encoding this protein (Pk-TIP). Determination of the nucleotide sequence and characterization of the recombinant protein revealed that Pk-TIP is composed of 224 amino acid residues (molecular weight of 25 558) and exists in a dimeric form. BIAcore analyses for the interaction between recombinant Pk-TIP and recombinant Pk-TBP indicated that they interact with each other with an equilibrium dissociation constant, KD, of 1.24–1.46 μM. A gel mobility shift assay indicated that Pk-TIP inhibited the interaction between Pk-TBP and a TATA-DNA. Pk-TIP may be one of the archaeal factors which negatively regulate transcription
Oxidative etching mechanism of the diamond (100) surface
John Isaac Enriquez, Fahdzi Muttaqien, Masato Michiuchi, Kouji Inagaki, Masaaki Geshi, Ikutaro Hamada, Yoshitada Morikawa, Oxidative etching mechanism of the diamond (100) surface, Carbon, Volume 174, 2021, Pages 36-51, https://doi.org/10.1016/j.carbon.2020.11.057
Biosurfactants from marine Cyanobacteria collected in Malaysia, Sabah
ABSTRACT
Chemical investigation of the organic extract from Moorea bouillonii, collected in Sabah, Malaysia, led to the isolation of three new chlorinated fatty acid amides, columbamides F (1), G (2), and H (3). The planar structures of 1–3 were established by a combination of mass spectrometric and NMR spectroscopic analyses. The absolute configuration of 1 was determined by Marfey’s analysis of its hydrolysate and chiral-phase HPLC analysis after conversion and esterification with Ohrui’s acid, (1S,2S)-2- (anthracene-2,3-dicarboximido) cyclohexanecarboxylic acid. Compound 1 showed biosurfactant activity by an oil displacement assay. Related known fatty acid amides columbamide D and serinolamide C exhibited biosurfactant activity with critical micelle concentrations of about 0.34 and 0.78 mM, respectively
- …