6 research outputs found

    J-PLUS: Discovery and characterisation of ultracool dwarfs using Virtual Observatory tools

    No full text
    Context. Ultracool dwarfs (UCDs) comprise the lowest mass members of the stellar population and brown dwarfs, from M7 V to cooler objects with L, T, and Y spectral types. Most of them have been discovered using wide-field imaging surveys, for which the Virtual Observatory (VO) has proven to be of great utility. Aims. We aim to perform a search for UCDs in the entire Javalambre Photometric Local Universe Survey (J-PLUS) second data release (2176 deg2) following a VO methodology. We also explore the ability to reproduce this search with a purely machine learning (ML)-based methodology that relies solely on J-PLUS photometry. Methods. We followed three different approaches based on parallaxes, proper motions, and colours, respectively, using the VOSA tool to estimate the effective temperatures and complement J-PLUS photometry with other catalogues in the optical and infrared. For the ML methodology, we built a two-step method based on principal component analysis and support vector machine algorithms. Results. We identified a total of 7827 new candidate UCDs, which represents an increase of about 135% in the number of UCDs reported in the sky coverage of the J-PLUS second data release. Among the candidate UCDs, we found 122 possible unresolved binary systems, 78 wide multiple systems, and 48 objects with a high Bayesian probability of belonging to a young association. We also identified four objects with strong excess in the filter corresponding to the Ca i

    Euclid: Early Release Observations -- A glance at free-floating new-born planets in the sigma Orionis cluster

    No full text
    International audienceWe provide an early assessment of the imaging capabilities of the Euclid space mission to probe deeply into nearby star-forming regions and associated very young open clusters, and in particular to check to what extent it can shed light on the new-born free-floating planet population. This paper focuses on a low-reddening region observed in just one Euclid pointing where the dust and gas has been cleared out by the hot sigma Orionis star. One late-M and six known spectroscopically confirmed L-type substellar members in the sigma Orionis cluster are used as benchmarks to provide a high-purity procedure to select new candidate members with Euclid. The exquisite angular resolution and depth delivered by the Euclid instruments allow us to focus on bona-fide point sources. A cleaned sample of sigma Orionis cluster substellar members has been produced and the initial mass function (IMF) has been estimated by combining Euclid and Gaia data. Our sigma Orionis substellar IMF is consistent with a power-law distribution with no significant steepening at the planetary-mass end. No evidence of a low-mass cutoff is found down to about 4 Jupiter masses at the young age (3 Myr) of the sigma Orionis open cluster
    corecore