66 research outputs found

    Fibre-optic delivery of time and frequency to VLBI station

    Full text link
    The quality of Very Long Baseline Interferometry (VLBI) radio observations predominantly relies on precise and ultra-stable time and frequency (T&F) standards, usually hydrogen masers (HM), maintained locally at each VLBI station. Here, we present an operational solution in which the VLBI observations are routinely carried out without use of a local HM, but using remote synchronization via a stabilized, long-distance fibre-optic link. The T&F reference signals, traceable to international atomic timescale (TAI), are delivered to the VLBI station from a dedicated timekeeping laboratory. Moreover, we describe a proof-of-concept experiment where the VLBI station is synchronized to a remote strontium optical lattice clock during the observation.Comment: 8 pages, 8 figures, matches the version published in A&A, section Astronomical instrumentatio

    Strontium optical lattice clocks for practical realization of the metre and secondary representation of the second

    Full text link
    We present a system of two independent strontium optical lattice standards probed with a single shared ultra-narrow laser. The absolute frequency of the clocks can be verified by the use of Er:fiber optical frequency comb with the GPS-disciplined Rb frequency standard. We report hertz-level spectroscopy of the clock line and measurements of frequency stability of the two strontium optical lattice clocks.Comment: This is an author-created, un-copyedited version of an article accepted for publication in Meas. Sci. Technol. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi:10.1088/0957-0233/26/7/07520

    Deformed Heisenberg algebra and minimal length

    Full text link
    A one-dimensional deformed Heisenberg algebra [X,P]=if(P)[X,P]=if(P) is studied. We answer the question: For what function of deformation f(P)f(P) there exists a nonzero minimal uncertainty in position (minimal length). We also find an explicit expression for the minimal length in the case of arbitrary function of deformation.Comment: to be published in JP

    Line shape measurements of rubidium 5S-7S two-photon transition

    Get PDF
    We report the use of a digital lock to measure the line profile and center frequency of rubidium 5S-7S two-photon transitions with a cw laser referenced to an optical frequency comb. The narrow, two-photon transition, 5S-7S (760 nm), insensitive to first-order in a magnetic field, is a promising candidate for frequency reference

    Topological insulator and quantum memory

    Full text link
    Measurements done on the quantum systems are too specific. Contrary to their classical counterparts, quantum measurements can be invasive and destroy the state of interest. Besides, quantumness limits the accuracy of measurements done on quantum systems. Uncertainty relations define the universal accuracy limit of the quantum measurements. Relatively recently, it was discovered that quantum correlations and quantum memory might reduce the uncertainty of quantum measurements. In the present work, we study two different types of measurements done on the topological system. Namely, we discuss measurements done on the spin operators and the canonical pair of operators: momentum and coordinate. We quantify the spin operator's measurements through the entropic measures of uncertainty and exploit the concept of quantum memory. While for the momentum and coordinate operators, we exploit the improved uncertainty relations. We discovered that quantum memory reduces the uncertainties of spin measurements. On the hand, we proved that the uncertainties in the measurements of the coordinate and momentum operators depend on the value of the momentum and are substantially enhanced at small distances between itinerant and localized electrons (the large momentum limit). We note that the topological nature of the system leads to the spin-momentum locking. The momentum of the electron depends on the spin and vice versa. Therefore, we suggest the indirect measurement scheme for the momentum and coordinate operators through the spin operator. Due to the factor of quantum memory, such indirect measurements in topological insulators have smaller uncertainties rather than direct measurements

    Large-momentum convergence of Hamiltonian bound-state dynamics of effective fermions in quantum field theory

    Get PDF
    Contributions to the bound-state dynamics of fermions in local quantum field theory from the region of large relative momenta of the constituent particles, are studied and compared in two different approaches. The first approach is conventionally developed in terms of bare fermions, a Tamm-Dancoff truncation on the particle number, and a momentum-space cutoff that requires counterterms in the Fock-space Hamiltonian. The second approach to the same theory deals with bound states of effective fermions, the latter being derived from a suitable renormalization group procedure. An example of two-fermion bound states in Yukawa theory, quantized in the light-front form of dynamics, is discussed in detail. The large-momentum region leads to a buildup of overlapping divergences in the bare Tamm-Dancoff approach, while the effective two-fermion dynamics is little influenced by the large-momentum region. This is illustrated by numerical estimates of the large-momentum contributions for coupling constants on the order of between 0.01 and 1, which is relevant for quarks.Comment: 22 pages, 9 figure
    corecore