349 research outputs found

    Novel 3' ends that support translation

    Get PDF
    The 3′ ends of two large noncoding RNAs, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) and MEN β, are formed by cleavage by RNase P and are capped but not polyadenylated. In the November 1, 2012, issue of Genes & Development, Wilusz and colleagues (pp. 2392–2407) show that when these 3′ ends are formed on a GFP reporter, the resulting mRNA is exported to the cytoplasm and translated. The 3′ end forms a novel triple-helical structure that supports export and translation as well as a poly(A) tail does

    The Stem-Loop Binding Protein Is Required for Efficient Translation of Histone mRNA In Vivo and In Vitro

    Get PDF
    Metazoan replication-dependent histone mRNAs end in a conserved stem-loop rather than in the poly(A) tail found on all other mRNAs. The 3′ end of histone mRNA binds a single class of proteins, the stem-loop binding proteins (SLBP). In Xenopus, there are two SLBPs: xSLBP1, the homologue of the mammalian SLBP, which is required for processing of histone pre-mRNA, and xSLBP2, which is expressed only during oogenesis and is bound to the stored histone mRNA in Xenopus oocytes. The stem-loop is required for efficient translation of histone mRNAs and substitutes for the poly(A) tail, which is required for efficient translation of other eucaryotic mRNAs. When a rabbit reticulocyte lysate is programmed with uncapped luciferase mRNA ending in the histone stem-loop, there is a three- to sixfold increase in translation in the presence of xSLBP1 while xSLBP2 has no effect on translation. Neither SLBP affected the translation of a luciferase mRNA ending in a mutant stem-loop that does not bind SLBP. Capped luciferase mRNAs ending in the stem-loop were injected into Xenopus oocytes after overexpression of either xSLBP1 or xSLBP2. Overexpression of xSLBP1 in the oocytes stimulated translation, while overexpression of xSLBP2 reduced translation of the luciferase mRNA ending in the histone stem-loop. A small region in the N-terminal portion of xSLBP1 is required to stimulate translation both in vivo and in vitro. An MS2-human SLBP1 fusion protein can activate translation of a reporter mRNA ending in an MS2 binding site, indicating that xSLBP1 only needs to be recruited to the 3′ end of the mRNA but does not need to be directly bound to the histone stem-loop to activate translation

    Structure of Histone mRNA Stem-Loop, Human Stem-Loop Binding Protein, and 3'hExo Ternary Complex

    Get PDF
    Metazoan replication-dependent histone mRNAs have a conserved stem-loop (SL) at their 3′-end. The stem–loop binding protein (SLBP) specifically recognizes the SL to regulate histone mRNA metabolism, and the 3′-5′ exonuclease 3′hExo trims its 3′-end after processing. We report the crystal structure of a ternary complex of human SLBP RNA binding domain, human 3′hExo, and a 26-nucleotide SL RNA. Only one base of the SL is recognized specifically by SLBP, and the two proteins primarily recognize the shape of the RNA. SLBP and 3′hExo have no direct contact with each other, and induced structural changes in the loop of the SL mediate their cooperative binding. The 3′ flanking sequence is positioned in the 3′hExo active site, but the ternary complex limits the extent of trimming

    3'-End processing of histone pre-mRNAs in Drosophila: U7 snRNP is associated with FLASH and polyadenylation factors

    Get PDF
    3′-End cleavage of animal replication-dependent histone pre-mRNAs is controlled by the U7 snRNP. Lsm11, the largest component of the U7-specific Sm ring, interacts with FLASH, and in mammalian nuclear extracts these two proteins form a platform that recruits the CPSF73 endonuclease and other polyadenylation factors to the U7 snRNP. FLASH is limiting, and the majority of the U7 snRNP in mammalian extracts exists as a core particle consisting of the U7 snRNA and the Sm ring. Here, we purified the U7 snRNP from Drosophila nuclear extracts and characterized its composition by mass spectrometry. In contrast to the mammalian U7 snRNP, a significant fraction of the Drosophila U7 snRNP contains endogenous FLASH and at least six subunits of the polyadenylation machinery: symplekin, CPSF73, CPSF100, CPSF160, WDR33, and CstF64. The same composite U7 snRNP is recruited to histone pre-mRNA for 3′-end processing. We identified a motif in Drosophila FLASH that is essential for the recruitment of the polyadenylation complex to the U7 snRNP and analyzed the role of other factors, including SLBP and Ars2, in 3′-end processing of Drosophila histone pre-mRNAs. SLBP that binds the upstream stem–loop structure likely recruits a yet-unidentified essential component(s) to the processing machinery. In contrast, Ars2, a protein previously shown to interact with FLASH in mammalian cells, is dispensable for processing in Drosophila. Our studies also demonstrate that Drosophila symplekin and three factors involved in cleavage and polyadenylation—CPSF, CstF, and CF Im—are present in Drosophila nuclear extracts in a stable supercomplex

    The C-terminal extension of Lsm4 interacts directly with the 3' end of the histone mRNP and is required for efficient histone mRNA degradation

    Get PDF
    Metazoan replication-dependent histone mRNAs are the only known eukaryotic mRNAs that lack a poly(A) tail, ending instead in a conserved stem–loop sequence, which is bound to the stem–loop binding protein (SLBP) on the histone mRNP. Histone mRNAs are rapidly degraded when DNA synthesis is inhibited in S phase in mammalian cells. Rapid degradation of histone mRNAs is initiated by oligouridylation of the 3′ end of histone mRNAs and requires the cytoplasmic Lsm1-7 complex, which can bind to the oligo(U) tail. An exonuclease, 3′hExo, forms a ternary complex with SLBP and the stem–loop and is required for the initiation of histone mRNA degradation. The Lsm1-7 complex is also involved in degradation of polyadenylated mRNAs. It binds to the oligo(A) tail remaining after deadenylation, inhibiting translation and recruiting the enzymes required for decapping. Whether the Lsm1-7 complex interacts directly with other components of the mRNP is not known. We report here that the C-terminal extension of Lsm4 interacts directly with the histone mRNP, contacting both SLBP and 3′hExo. Mutants in the C-terminal tail of Lsm4 that prevent SLBP and 3′hExo binding reduce the rate of histone mRNA degradation when DNA synthesis is inhibited

    Genetic and biochemical characterization of Drosophila Snipper: A promiscuous member of the metazoan 3'hExo/ERI-1 family of 3' to 5' exonucleases

    Get PDF
    The DnaQ-H family exonuclease Snipper (Snp) is a 33-kDa Drosophila melanogaster homolog of 3′hExo and ERI-1, exoribonucleases implicated in the degradation of histone mRNA in mammals and in the negative regulation of RNA interference (RNAi) in Caenorhabditis elegans, respectively. In metazoans, Snp, Exod1, 3′hExo, ERI-1, and the prpip nucleases define a new subclass of structure-specific 3′-5′ exonucleases that bind and degrade double-stranded RNA and/or DNA substrates with 3′ overhangs of 2–5 nucleotides (nt) in the presence of Mg2+ with no apparent sequence specificity. These nucleases are also capable of degrading linear substrates. Snp efficiently degrades structured RNA and DNA substrates as long as there exists a minimum 3′ overhang of 2 nt to initiate degradation. We identified a Snp mutant and used it to test whether Snp plays a role in regulating histone mRNA degradation or RNAi in vivo. Snp mutant flies are viable, and display no obvious developmental abnormalities. The expression pattern and level of histone H3 mRNA in Snp mutant embryos and third instar imaginal eye discs was indistinguishable from wild type, suggesting that Snp does not play a significant role in the turnover of histone mRNA at the end of the S phase. The loss of Snp was also unable to enhance the silencing capability of two different RNAi transgenes targeting the white and yellow genes, suggesting that Snp does not negatively modulate RNAi. Therefore, Snp is a nonessential exonuclease that is not a functional ortholog of either 3′hExo or ERI-1

    Molecular mechanisms for the regulation of histone mRNA stem-loop-binding protein by phosphorylation

    Get PDF
    As DNA is replicated during cell division, it must be packaged by histones. To match the level of available histones to DNA replication, histone mRNA expression is controlled by a 3′-end stem-loop structure unique to replication-dependent histone mRNAs. In Drosophila, this regulation is mediated by histone mRNA stem-loop–binding protein (dSLBP), which has minimal tertiary structure when not bound to RNA. We show here that phosphorylation of dSLBP dramatically increases binding affinity for stem-loop RNA. The phosphorylated C-terminal tail of dSLBP does not contact RNA. Instead, increased negative charge on the C-terminal tail and stabilization of structural elements by a phosphorylation site within the RNA-binding domain promote more compact conformations that should reduce the entropic barrier to binding histone mRNA

    A Complex Containing the CPSF73 Endonuclease and Other Polyadenylation Factors Associates with U7 snRNP and Is Recruited to Histone Pre-mRNA for 3'-End Processing

    Get PDF
    Animal replication-dependent histone pre-mRNAs are processed at the 3′ end by endonucleolytic cleavage that is not followed by polyadenylation. The cleavage reaction is catalyzed by CPSF73 and depends on the U7 snRNP and its integral component, Lsm11. A critical role is also played by the 220-kDa protein FLASH, which interacts with Lsm11. Here we demonstrate that the N-terminal regions of these two proteins form a platform that tightly interacts with a unique combination of polyadenylation factors: symplekin, CstF64, and all CPSF subunits, including the endonuclease CPSF73. The interaction is inhibited by alterations in each component of the FLASH/Lsm11 complex, including point mutations in FLASH that are detrimental for processing. The same polyadenylation factors are associated with the endogenous U7 snRNP and are recruited in a U7-dependent manner to histone pre-mRNA. Collectively, our studies identify the molecular mechanism that recruits the CPSF73 endonuclease to histone pre-mRNAs, reveal an unexpected complexity of the U7 snRNP, and suggest that in animal cells polyadenylation factors assemble into two alternative complexes—one specifically crafted to generate polyadenylated mRNAs and the other to generate nonpolyadenylated histone mRNAs that end with the stem-loop

    Circular RNAs are abundant, conserved, and associated with ALU repeats

    Get PDF
    Circular RNAs composed of exonic sequence have been described in a small number of genes. Thought to result from splicing errors, circular RNA species possess no known function. To delineate the universe of endogenous circular RNAs, we performed high-throughput sequencing (RNA-seq) of libraries prepared from ribosome-depleted RNA with or without digestion with the RNA exonuclease, RNase R. We identified >25,000 distinct RNA species in human fibroblasts that contained non-colinear exons (a “backsplice”) and were reproducibly enriched by exonuclease degradation of linear RNA. These RNAs were validated as circular RNA (ecircRNA), rather than linear RNA, and were more stable than associated linear mRNAs in vivo. In some cases, the abundance of circular molecules exceeded that of associated linear mRNA by >10-fold. By conservative estimate, we identified ecircRNAs from 14.4% of actively transcribed genes in human fibroblasts. Application of this method to murine testis RNA identified 69 ecircRNAs in precisely orthologous locations to human circular RNAs. Of note, paralogous kinases HIPK2 and HIPK3 produce abundant ecircRNA from their second exon in both humans and mice. Though HIPK3 circular RNAs contain an AUG translation start, it and other ecircRNAs were not bound to ribosomes. Circular RNAs could be degraded by siRNAs and, therefore, may act as competing endogenous RNAs. Bioinformatic analysis revealed shared features of circularized exons, including long bordering introns that contained complementary ALU repeats. These data show that ecircRNAs are abundant, stable, conserved and nonrandom products of RNA splicing that could be involved in control of gene expression

    Interaction between FLASH and Lsm11 is essential for histone pre-mRNA processing in vivo in Drosophila

    Get PDF
    Metazoan replication-dependent histone mRNAs are the only nonpolyadenylated cellular mRNAs. Formation of the histone mRNA 3′ end requires the U7 snRNP, which contains Lsm10 and Lsm11, and FLASH, a processing factor that binds Lsm11. Here, we identify sequences in Drosophila FLASH (dFLASH) that bind Drosophila Lsm11 (dLsm11), allow localization of dFLASH to the nucleus and histone locus body (HLB), and participate in histone pre-mRNA processing in vivo. Amino acids 105–154 of dFLASH bind to amino acids 1–78 of dLsm11. A two-amino acid mutation of dLsm11 that prevents dFLASH binding but does not affect localization of U7 snRNP to the HLB cannot rescue the lethality or histone pre-mRNA processing defects resulting from an Lsm11 null mutation. The last 45 amino acids of FLASH are required for efficient localization to the HLB in Drosophila cultured cells. Removing the first 64 amino acids of FLASH has no effect on processing in vivo. Removal of 13 additional amino acids of dFLASH results in a dominant negative protein that binds Lsm11 but inhibits processing of histone pre-mRNA in vivo. Inhibition requires the Lsm11 binding site, suggesting that the mutant dFLASH protein sequesters the U7 snRNP in an inactive complex and that residues between 64 and 77 of dFLASH interact with a factor required for processing. Together, these studies demonstrate that direct interaction between dFLASH and dLsm11 is essential for histone pre-mRNA processing in vivo and for proper development and viability in flies
    • …
    corecore