Molecular mechanisms for the regulation of histone mRNA stem-loop-binding protein by phosphorylation

Abstract

As DNA is replicated during cell division, it must be packaged by histones. To match the level of available histones to DNA replication, histone mRNA expression is controlled by a 3′-end stem-loop structure unique to replication-dependent histone mRNAs. In Drosophila, this regulation is mediated by histone mRNA stem-loop–binding protein (dSLBP), which has minimal tertiary structure when not bound to RNA. We show here that phosphorylation of dSLBP dramatically increases binding affinity for stem-loop RNA. The phosphorylated C-terminal tail of dSLBP does not contact RNA. Instead, increased negative charge on the C-terminal tail and stabilization of structural elements by a phosphorylation site within the RNA-binding domain promote more compact conformations that should reduce the entropic barrier to binding histone mRNA

    Similar works