50 research outputs found

    Propagule composition regulates the success of an invasive seaweed across a heterogeneous seascape

    Get PDF
    Abstract Propagule pressure is acknowledged as a key determinant of invasion success. Nonetheless, the role of morphological or physiological attributes of propagules (i.e. their quality) in regulating invader establishment has been little explored. In particular, no study has investigated how the presence of propagules differing in quality within an inoculum influences establishment across heterogeneous landscapes. We experimentally tested the hypothesis that the quality (+Fronds+Rhizoids; +Fronds−Rhizoids; −Fronds+Rhizoids) and the diversity (1, 2 and 3 fragment types) of vegetative fragments of the seaweed Caulerpa taxifolia determine their establishment success across seascapes consisting of bare sediments and patches of the seagrass Zostera muelleri exposed to different disturbance intensities (control, seagrass canopy clipping and total removal). After 6 weeks, seaweed biomass, stolon and frond length, frond and rhizoid number were generally greater in unvegetated habitats (bare sediments and total seagrass removal) than full or reduced seagrass canopies. The type and the diversity of types of fragments inoculated had significant effects on the final biomass and morphological features of C. taxifolia only in vegetated habitats. In control plots, inocula of fragments retaining both fronds and rhizoids achieved higher biomass, developed longer stolons and more fronds. In canopy clipping plots, mixed inocula of +Fronds+Rhizoids and −Fronds+Rhizoids fragments had the greatest biomass and stolon length. Synthesis. Assessing how propagules differing in quality perform in different habitats might be not sufficient to draw a comprehensive picture of invasion risk, as their establishment can be modulated by both negative and positive interactions among them. Propagule composition should be, therefore, considered as a further dimension of propagule pressure. Our results also suggest that the relevance of specific propagule traits for invader establishment decreases from intact to degraded habitats. Considering propagule size in terms of amount of competent propagules, rather than an absolute measure, would refine our ability of predicting invasion risk across habitats differing in biotic or abiotic conditions

    Brief communication: Impacts of a developing polynya off Commonwealth Bay, East Antarctica, triggered by grounding of iceberg B09B

    Get PDF
    The dramatic calving of the Mertz Glacier tongue in 2010, precipitated by the movement of iceberg B09B, reshaped the oceanographic regime across the Mertz Polynya and Commonwealth Bay, regions where high-salinity shelf water (HSSW) - the precursor to Antarctic bottom water (AABW) - is formed. Here we present post-calving observations that suggest that this reconfiguration and subsequent grounding of B09B have driven the development of a new polynya and associated HSSW production off Commonwealth Bay. Supported by satellite observations and modelling, our findings demonstrate how local icescape changes may impact the formation of HSSW, with potential implications for large-scale ocean circulation

    A 39.8kb flavi-like virus uses a novel strategy for overcoming the RNA virus error threshold

    Get PDF
    It is commonly held that there is a fundamental relationship between genome size and error rate, manifest as a notional “error threshold” that sets an upper limit on genome sizes. The genome sizes of RNA viruses, which have intrinsically high mutation rates due to a lack of mechanisms for error correction, must therefore be small to avoid accumulating an excessive number of deleterious mutations that will ultimately lead to population extinction. The proposed exceptions to this evolutionary rule are RNA viruses from the order Nidovirales (such as coronaviruses) that encode an error correcting exonuclease, enabling them to reach genome lengths greater than 40kb. The recent discovery of large genome flavi-like viruses (Flaviviridae), which comprise genomes up to 27kb in length yet seemingly do not encode exonuclease domains, has led to the proposal that a proofreading mechanism is required to facilitate the expansion of RNA virus genomes above 30kb. Herein, we describe a 39.8kb flavi-like virus identified in a Haliclona sponge metatranscriptome that does not encode an exonuclease. Structural analysis revealed that this virus may have instead captured bacterial domains associated with nucleic acid metabolism that have not been previously found in RNA viruses. Phylogenetic analysis placed this virus as a divergent pesti-like lineage, such that we have provisionally termed it Maximus pesti-like virus. This virus represents the first instance of a flavi-like virus achieving a genome size comparable to that of the Nidovirales and demonstrates that RNA viruses have evolved multiple solutions to overcome the error threshold

    Environmental DNA signatures distinguish between tsunami and storm deposition in overwash sand

    Full text link
    AbstractSandy onshore deposits from tsunamis are difficult to distinguish from storm deposits, which makes it difficult to assess coastal hazards from the geological record. Here we analyse environmental DNA from microbial communities preserved in known tsunami and storm-deposited sediments and intercalating soils and non-marine sediments near Cuddalore, India, and Phra Thong Island, Thailand. Both sites were impacted by the 2004 Indian Ocean Tsunami and a subsequent storm flooding event (2011 Cyclone Thane at Cuddalore and a 2007 storm at Phra Thong Island). We show that the microbial communities in the overwash deposits are significantly different from soil and sediments that are not derived by overwash processes at both locations. Our method also successfully discriminates between modern tsunami deposits and storm deposits. We suggest molecular techniques have the potential to accurately discriminate overwash deposits from catastrophic natural events.</jats:p

    Brief communication: Impacts of a developing polynya off Commonwealth Bay, East Antarctica, triggered by grounding of iceberg B09B

    Full text link
    The dramatic calving of the Mertz Glacier tongue in 2010, precipitated by the movement of iceberg B09B, reshaped the oceanographic regime across the Mertz Polynya and Commonwealth Bay, regions where high-salinity shelf water (HSSW) - the precursor to Antarctic bottom water (AABW) - is formed. Here we present post-calving observations that suggest that this reconfiguration and subsequent grounding of B09B have driven the development of a new polynya and associated HSSW production off Commonwealth Bay. Supported by satellite observations and modelling, our findings demonstrate how local icescape changes may impact the formation of HSSW, with potential implications for large-scale ocean circulation

    A deep dive into the ecology of Gamay (Botany Bay, Australia): current knowledge and future priorities for this highly modified coastal waterway

    Get PDF
    Context: Gamay is a coastal waterway of immense social, cultural and ecological value. Since European settlement, it has become a hub for industrialisation and human modification. There is growing desire for ecosystem-level management of urban waterways, but such efforts are often challenged by a lack of integrated knowledge. Aim and methods: We systematically reviewed published literature and traditional ecological knowledge (TEK), and consulted scientists to produce a review of Gamay that synthesises published knowledge of Gamay’s aquatic ecosystem to identify knowledge gaps and future research opportunities. Key results: We found 577 published resources on Gamay, of which over 70% focused on ecology. Intertidal rocky shores were the most studied habitat, focusing on invertebrate communities. Few studies considered multiple habitats or taxa. Studies investigating cumulative human impacts, long-term trends and habitat connectivity are lacking, and the broader ecological role of artificial substrate as habitat in Gamay is poorly understood. TEK of Gamay remains a significant knowledge gap. Habitat restoration has shown promising results and could provide opportunities to improve affected habitats in the future. Conclusion and implications: This review highlights the extensive amount of knowledge that exists for Gamay, but also identifies key gaps that need to be filled for effective management
    corecore