5 research outputs found

    Optimal Fixation Conditions and DNA Extraction Methods for MLPA Analysis on FFPE Tissue-Derived DNA

    No full text
    OBJECTIVES: Molecular genetic analysis of formalin-fixed, paraffin-embedded (FFPE) tissues is of great importance both for research and diagnostics. Multiplex ligation-dependent probe amplification (MLPA) is a widely used technique for gene copy number determination, and it has been successfully used for FFPE tissue-extracted DNA analysis. However, there have been no studies addressing the effect of tissue fixation procedures and DNA extraction methods on MLPA. This study therefore focuses on selecting optimal preanalytic conditions such as FFPE tissue preparation conditions and DNA extraction methods. METHODS: Healthy tissues were fixed in buffered or nonbuffered formalin for 1 hour, 12 to 24 hours, or 48 to 60 hours at 4 °C or at room temperature. DNA extracted from differently fixed and subsequently paraffin-embedded tissues was used for MLPA. Four commercial DNA extraction kits and one in-house method were compared. RESULTS: Tissues fixed for 12 to 24 hours in buffered formalin at room temperature produced DNA with the most optimal quality for MLPA. The in-house FFPE DNA extraction method was shown to perform as efficient as or even superior to other methods in terms of suitability for MLPA, time and cost-efficiency, and ease of performance. CONCLUSIONS: FFPE-extracted DNA is well suitable for MLPA analysis, given that optimal tissue fixation and DNA extraction methods are chosen

    Role of columnar cell lesions in breast carcinogenesis : analysis of chromosome 16 copy number changes by multiplex ligation-dependent probe amplification

    No full text
    Columnar cell lesions have been proposed as precursor lesions of low-grade breast cancer. The molecular characteristic of low-grade breast neoplasia is whole-arm loss of chromosome 16q. Copy number changes of 6 genes on 16p and 20 genes on 16q were analysed by multiplex ligation-dependent probe amplification in 165 lesions of 103 patients. Twenty-three columnar cell lesions and 19 atypical ducal hyperplasia lesions arising in columnar cell lesions were included, as well as cases of usual ductal hyperplasia, blunt duct adenosis, ductal carcinoma in situ, lobular neoplasia and invasive carcinoma. Usual ductal hyperplasia and blunt duct adenosis lacked whole-arm losses of 16q. In contrast, columnar cell lesions without atypia, columnar cell lesions with atypia, atypical ductal hyperplasia, low-grade ductal carcinoma in situ and low-grade invasive carcinomas increasingly harboured whole-arm losses of 16q (17%, 27%, 47% and 57%, respectively). However, no recurrent losses in specific genes could be identified. In several patients, columnar cell lesions and atypical ductal hyperplasia harboured similar losses as related ductal carcinoma in situ or invasive carcinomas within the same breast. There were indications for 16q breakpoints near the centromere. Whole-arm gains on 16p were relatively scarce and there was no relation between whole-arm gains of 16p and progression of lesions of the low-grade breast neoplasia family. In conclusion, columnar cell lesions (with and without atypia) often harbour whole-arm losses of 16q, which underlines their role as precursors in low-grade breast carcinogenesis, in contrast with usual ductal hyperplasia and blunt duct adenosis. However, no recurrent losses in specific genes could be identified, pointing to minor events in multiple tumour suppressor genes rather than major events in a single 16q gene contributing to low-grade breast carcinogenesis
    corecore