6 research outputs found

    Chemistry-to-gene screens in Caenorhabditis elegans.

    No full text
    The nematode worm Caenorhabditis elegans is a genetic model organism linked to an impressive portfolio of fundamental discoveries in biology. This free-living nematode, which can be easily and inexpensively grown in the laboratory, is also a natural vehicle for screening for drugs that are active against nematode parasites. Here, we show that chemistry-to-gene screens using this animal model can define targets of antiparasitic drugs, identify novel candidate drug targets and contribute to the discovery of new drugs for treating human diseases

    Copper uptake and trafficking in the brain

    No full text
    The aim of this chapter is to give a general view on the current status of the scientific basis for the role of copper in human health and disease, outlining the roles of copper in human metabolism and bioenergetics, its coordination chemistry as well as the biological ligands involved in the multiple steps of metal incorporation. In particular, our attention has been focused towards the interaction of copper status and brain function in health and disease, with particular consideration to the role of copper in the pathogenesis of Wilson’s, of Menkes’s, and of human neurodegenerative diseases. Data on interactions between essential trace elements and copper, from the level of absorption in the gut to other systems in the body, are also presented. Particular attention is paid to copper-dependent enzymes in the central nervous system and to copper uptake and trafficking in brain cells
    corecore