21 research outputs found

    A holobiont approach towards polysaccharide degradation by the highly compartmentalised gut system of the soil-feeding higher termite Labiotermes labralis.

    Get PDF
    peer reviewed[en] BACKGROUND: Termites are among the most successful insects on Earth and can feed on a broad range of organic matter at various stages of decomposition. The termite gut system is often referred to as a micro-reactor and is a complex structure consisting of several components. It includes the host, its gut microbiome and fungal gardens, in the case of fungi-growing higher termites. The digestive tract of soil-feeding higher termites is characterised by radial and axial gradients of physicochemical parameters (e.g. pH, O2 and H2 partial pressure), and also differs in the density and structure of residing microbial communities. Although soil-feeding termites account for 60% of the known termite species, their biomass degradation strategies are far less known compared to their wood-feeding counterparts. RESULTS: In this work, we applied an integrative multi-omics approach for the first time at the holobiont level to study the highly compartmentalised gut system of the soil-feeding higher termite Labiotermes labralis. We relied on 16S rRNA gene community profiling, metagenomics and (meta)transcriptomics to uncover the distribution of functional roles, in particular those related to carbohydrate hydrolysis, across different gut compartments and among the members of the bacterial community and the host itself. We showed that the Labiotermes gut was dominated by members of the Firmicutes phylum, whose abundance gradually decreased towards the posterior segments of the hindgut, in favour of Bacteroidetes, Proteobacteria and Verrucomicrobia. Contrary to expectations, we observed that L. labralis gut microbes expressed a high diversity of carbohydrate active enzymes involved in cellulose and hemicelluloses degradation, making the soil-feeding termite gut a unique reservoir of lignocellulolytic enzymes with considerable biotechnological potential. We also evidenced that the host cellulases have different phylogenetic origins and structures, which is possibly translated into their different specificities towards cellulose. From an ecological perspective, we could speculate that the capacity to feed on distinct polymorphs of cellulose retained in soil might have enabled this termite species to widely colonise the different habitats of the Amazon basin. CONCLUSIONS: Our study provides interesting insights into the distribution of the hydrolytic potential of the highly compartmentalised higher termite gut. The large number of expressed enzymes targeting the different lignocellulose components make the Labiotermes worker gut a relevant lignocellulose-valorising model to mimic by biomass conversion industries.Explor‑ ing the higher termite lignocellulolytic system to optimise the conversion of biomass into energy and useful platform molecule

    SISTEM PENDUKUNG KEPUTUSAN POLA OLAHRAGA BERDASARKAN HASIL YANG INGIN DICAPAI MENGGUNAKAN FUZZY DATABASE MODEL TAHANI

    Get PDF
    Pada saat ini, perkembangan di dunia kesehatan telah berkembang secara cepat sehingga mendorong para ahli untuk merancang sebuah teknologi yang dapat mengambil keputusan didalam bidang kesehatan. Kesehatan merupakan hal sangat mahal dan sangat penting bagi keberlangsungan hidup manusia. Untuk mendapatkan tubuh yang sehat tentunya di butuhkan olahraga yang teratur. Olahraga dilakukan juga harus dengan porsi yang dibutuhkan oleh tubuh. Ketidaktahuan akan porsi olahraga yang dibutuhkan oleh tubuh manusia ini yang menjadi masalah bagi kebanyakan orang. Penelitian ini menggunakan metode studi literature dalam pengumpulan data serta fuzzy database model tahani. Pengembangan sistemnya menggunakan metode waterfall. Pemodelan analisis dan desain menggunakan bahasa pemograman PHP dan database server MySQL. Metode pengujian menggunakan pengujian white box.  Hasil penelitian ini adalah sebuah sistem pendukung keputusan pola olahraga berbasis website yang dapat memudahkan pengguna dalam menentukan pola olahraga yang cocok dilakukan sesuai data kriteria yaitu umur, berat badan dan tinggi badan

    Unravelling the termite digestion process complexity - a multi-omics approach applied to termites with different feeding regimes

    No full text
    With its unique consortium of microorganisms from all domains of life, termite gut is considered one of the most efficient lignocellulose degrading systems in nature. Recently, host diet and taxonomy as well as gut microenvironmental conditions have emerged as main factors shaping microbial communities in termite guts. The aim of this thesis was to investigate this highly efficient lignocellulolytic system at holobiont level, with a particular focus on gut microbiome function and composition in relation to the host diet. As a starting point, we optimised a complete framework for an accurate termite gut prokaryote-oriented metatranscriptomics, which was at the basis of all subsequent sequencing assay designs and analyses performed in the course of the work. Afterwards, we characterised the compositions and functions of biomass-degrading bacterial communities in guts of plant fibre- and soil-feeding higher termites, proving the existence of functional equivalence across microbial populations from different termite hosts. We also showed that each termite is a reservoir of unique microorganisms and their accompanying genes. We further extended above approach to metagenomics and bacterial genomes reconstruction and we applied it to explore the process of biomass digestion in the different sections of the highly compartmented gut of soil feeding Labiotermes labralis. We showed that primarily cellulolytic activity of the termite host was restricted to foregut and midgut, while bacterial contribution was most pronounced in P1 and P3 hindgut compartments and included activities targeting broad range of lignocellulose components. Finally, we investigated the adaptation of a laboratory-maintained grass-feeding higher termite colony of Cortaritermes spp. to Miscanthus diet at host and symbiont levels. A natural system of a termite gut was shown to progressively change in composition to yield a consortium of microbes specialised in degradation of a specific biomass. Overall, the integrative omics approach proposed here provide a framework for a better understanding of a complex lignocellulose degradation by a higher termite gut system and pave a road towards its future bioprospecting.Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Bacteriome-associated Wolbachia of the parthenogenetic termite Cavitermes tuberosus.

    No full text
    Wolbachia has deeply shaped the ecology and evolution of many arthropods, and interactions between the two partners are a continuum ranging from parasitism to mutualism. Non-dispersing queens of the termite Cavitermes tuberosus are parthenogenetically produced through gamete duplication, a mode of ploidy restoration generally induced by Wolbachia. These queens display a bacteriome-like structure in the anterior part of the mesenteron. Our study explores the possibility of a nutritional mutualistic, rather than a parasitic, association between Wolbachia and C. tuberosus. We found a unique strain (wCtub), nested in the supergroup F, in 28 nests collected in French Guiana, the island of Trinidad and the state of Paraíba, Brazil (over 3,500 km). wCtub infects individuals regardless of caste, sex or reproductive (sexual versus parthenogenetic) origin. qPCR assays reveal that Wolbachia densities are higher in the bacteriome-like structure and in the surrounding gut compared to other somatic tissues. High-throughput 16S rRNA gene amplicon sequencing reveals that Wolbachia represents over 97% of bacterial reads present in the bacteriome structure. BLAST analyses of 16S rRNA, bioA (a gene of the biosynthetic pathway of B vitamins) and five MLST genes indicated that wCtub shares 99% identity with wCle, an obligate nutritional mutualist of the bedbug Cimex lectularius.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Nest composition, stable isotope ratios and microbiota unravel the feeding behaviour of an inquiline termite

    No full text
    Termites are eusocial insects having evolved several feeding, nesting and reproductive strategies. Among them, inquiline termites live in a nest built by other termite species: some of them do not forage outside the nest, but feed on food stored by the host or on the nest material itself. In this study, we characterized some dimensions of the ecological niche of Cavitermes tuberosus (Termitidae: Termitinae), a broad-spectrum inquiline termite with a large neotropical distribution, to explain its ecological success. We used an integrative framework combining ecological measures (physico-chemical parameters, stable isotopic ratios of N and C) and Illumina MiSeq sequencing of 16S rRNA gene to identify bacterial communities and to analyse termites as well as the material from nests constructed by different termite hosts (the builders). Our results show that (1) nests inhabited by C. tuberosus display a different physico-chemical composition when compared to nests inhabited by its builder alone; (2) stable isotopic ratios suggest that C. tuberosus feeds on already processed, more humified, nest organic matter; and (3) the gut microbiomes cluster by termite species, with the one of C. tuberosus being much more diverse and highly similar to the one of its main host, Labiotermes labralis. These results support the hypothesis that C. tuberosus is a generalist nest feeder adapted to colonize nests built by various builders, and explain its ecological success.info:eu-repo/semantics/publishe

    Nest composition, stable isotope ratios and microbiota unravel the feeding behaviour of an inquiline termite

    Full text link
    Termites are eusocial insects having evolved several feeding, nesting and reproductive strategies. Among them, inquiline termites live in a nest built by other termite species: some of them do not forage outside the nest, but feed on food stored by the host or on the nest material itself. In this study, we characterized some dimensions of the ecological niche of Cavitermes tuberosus (Termitidae: Termitinae), a broad-spectrum inquiline termite with a large neotropical distribution, to explain its ecological success. We used an integrative framework combining ecological measures (physico-chemical parameters, stable isotopic ratios of N and C) and Illumina MiSeq sequencing of 16S rRNA gene to identify bacterial communities and to analyse termites as well as the material from nests constructed by different termite hosts (the builders). Our results show that (1) nests inhabited by C. tuberosus display a different physico-chemical composition when compared to nests inhabited by its builder alone; (2) stable isotopic ratios suggest that C. tuberosus feeds on already processed, more humified, nest organic matter; and (3) the gut microbiomes cluster by termite species, with the one of C. tuberosus being much more diverse and highly similar to the one of its main host, Labiotermes labralis. These results support the hypothesis that C. tuberosus is a generalist nest feeder adapted to colonize nests built by various builders, and explain its ecological success
    corecore