9 research outputs found
Recommended from our members
P16-31. Skewed HIV-1-Specific CD4+ Th2 Helper Cell Contribution in Progressive HIV-1 Infection
Recommended from our members
Fully Differentiated HIV-1 Specific CD8+ T Effector Cells are More Frequently Detectable in Controlled than in Progressive HIV-1 Infection
Background: CD8+ T cells impact control of viral infections by direct elimination of infected cells and secretion of a number of soluble factors. In HIV-1 infection, persistent HIV-1 specific IFN-γ+ CD8+ T cell responses are detected in the setting of disease progression, consistent with functional impairment in vivo. Recent data suggest that impaired maturation, as defined by the lineage markers CD45RA and CCR7, may contribute to a lack of immune control by these responses. Methodology/Principal Findings: We investigated the maturation phenotype of epitope-specific CD8+ T cell responses directed against HIV-1 in 42 chronically infected, untreated individuals, 22 of whom were “Controllers” (median 1140 RNA copies/ml plasma, range less than 50 to 2520), and 20 “progressors” of whom had advanced disease and high viral loads (median 135,500 RNA copies/ml plasma, range 12100 to greater than 750000). Evaluation of a mean of 5 epitopes per person revealed that terminally differentiated CD8+ T cells directed against HIV-1 are more often seen in HIV-1 Controllers (16/22; 73%) compared to HIV-1 progressors (7/20; 35%)(p = 0.015), but the maturation state of epitope-specific responses within a given individual was quite variable. Maturation phenotype was independent of the HLA restriction or the specificity of a given CD8+ T cell response and individual epitopes associated with slow disease progression were not more likely to be terminally differentiated. Conclusions/Significance: These data indicate that although full maturation of epitope-specific CD8+ T cell responses is associated with viral control, the maturation status of HIV-1 specific CD8+ T cell responses within a given individual are quite heterogeneous, suggesting epitope-specific influences on CD8+ T cell function
Discrimination of SARS-CoV-2 Infections From Other Viral Respiratory Infections by Scent Detection Dogs
Background: Testing of possibly infected individuals remains cornerstone of containing the spread of SARS-CoV-2. Detection dogs could contribute to mass screening. Previous research demonstrated canines' ability to detect SARS-CoV-2-infections but has not investigated if dogs can differentiate between COVID-19 and other virus infections.
Methods: Twelve dogs were trained to detect SARS-CoV-2 positive samples. Three test scenarios were performed to evaluate their ability to discriminate SARS-CoV-2-infections from viral infections of a different aetiology. Naso- and oropharyngeal swab samples from individuals and samples from cell culture both infected with one of 15 viruses that may cause COVID-19-like symptoms were presented as distractors in a randomised, double-blind study. Dogs were either trained with SARS-CoV-2 positive saliva samples (test scenario I and II) or with supernatant from cell cultures (test scenario III).
Results: When using swab samples from individuals infected with viruses other than SARS-CoV-2 as distractors (test scenario I), dogs detected swab samples from SARS-CoV-2-infected individuals with a mean diagnostic sensitivity of 73.8% (95% CI: 66.0–81.7%) and a specificity of 95.1% (95% CI: 92.6–97.7%). In test scenario II and III cell culture supernatant from cells infected with SARS-CoV-2, cells infected with other coronaviruses and non-infected cells were presented. Dogs achieved mean diagnostic sensitivities of 61.2% (95% CI: 50.7–71.6%, test scenario II) and 75.8% (95% CI: 53.0–98.5%, test scenario III), respectively. The diagnostic specificities were 90.9% (95% CI: 87.3–94.6%, test scenario II) and 90.2% (95% CI: 81.1–99.4%, test scenario III), respectively.
Conclusion: In all three test scenarios the mean specificities were above 90% which indicates that dogs can distinguish SARS-CoV-2-infections from other viral infections. However, compared to earlier studies our scent dogs achieved lower diagnostic sensitivities. To deploy COVID-19 detection dogs as a reliable screening method it is therefore mandatory to include a variety of samples from different viral respiratory tract infections in dog training to ensure a successful discrimination process.Peer Reviewe
Integration of microarray data and literature mining identifies a sex bias in DPP4+CD4+ T cells in HIV-1 infection.
HIV-1 infection exhibits a significant sex bias. This study aimed at identifying and examining lymphocyte associated sex differences in HIV-1 pathogenesis using a data-driven approach. To select targets for investigating sex differences in lymphocytes, data of microarray experiments and literature mining were integrated. Data from three large-scale microarray experiments were obtained from NCBI/GEO and screened for sex differences in gene expression. Literature mining was employed to identify sex biased genes in the microarray data, which were relevant to HIV-1 pathogenesis and lymphocyte biology. Sex differences in gene expression of selected genes were investigated by RT-qPCR and flowcytometry in healthy individuals and persons living with HIV-1. A significant and consistent sex bias was identified in 31 genes, the majority of which were related to immunity and expressed at higher levels in women. Using literature mining, three genes (DPP4, FCGR1A and SOCS3) were selected for analysis by qPCR because of their relevance to HIV, as well as, B and T cell biology. DPP4 exhibited the most significant sex bias in mRNA expression (p = 0.00029). Therefore, its expression was further analyzed on B and T cells using flowcytometry. In HIV-1 infected controllers and healthy individuals, frequencies of CD4+DPP4+ T cells were higher in women compared to men (p = 0.037 and p = 0.027). In women, CD4 T cell counts correlated with a predominant decreased in DPP4+CD4+ T cells (p = 0.0032). Sex differences in DPP4 expression abrogated in progressive HIV-1 infection. In conclusion, we found sex differences in the pathobiology of T cells in HIV-1 infection using a data-driven approach. Our results indicate that DPP4 expression on CD4+ T cells might contribute to the immunological sex differences observed in chronic HIV‑1 infection
Clinical Outcomes of SARS-CoV-2 Breakthrough Infections in Liver Transplant Recipients during the Omicron Wave
At the start of the pandemic, liver transplant recipients (LTR) were at high risk of developing severe COVID-19. Here, the outcomes of breakthrough infections in fully vaccinated LTR (n = 98) during the Omicron wave were assessed. In most patients, a mild disease course was observed, but 11 LTR (11.2%) required hospitalization for COVID-19-related complications. All patients survived. The LTR requiring hospitalization were older (67 years vs. 54 years; p p p = 0.03). Long-lasting symptoms for ≥4 weeks were reported by 37.5% of LTR (30/80). Risk factors in LTR included female sex (p = 0.01; Odds Ratio (OR) = 4.92 (95% confidence interval (CI) (1.5–16.5)) and dyspnea (p = 0.009; OR = 7.2 (95% CI (1.6–31.6)) during infection. Post-infection high anti-S RBD antibody levels were observed in LTR, and healthy controls (HC), while the cellular immune response, assessed by interferon-gamma release assay (EUROIMMUN), was significantly lower in LTR compared with HC (p < 0.001). In summary, in fully vaccinated LTR, SARS-CoV-2 breakthrough infections during the Omicron wave led to mild disease courses in the majority of patients and further boosted the humoral and cellular hybrid anti-SARS-CoV-2-directed immune response. While all patients survived, older and multimorbid LTR with low baseline antibody titers after vaccination still had a substantial risk for a disease course requiring hospitalization due to COVID-19-related complications
High and Sustained Ex Vivo Frequency but Altered Phenotype of SARS-CoV-2-Specific CD4<sup>+</sup> T-Cells in an Anti-CD20-Treated Patient with Prolonged COVID-19
Here, we longitudinally assessed the ex vivo frequency and phenotype of SARS-CoV-2 membrane protein (aa145–164) epitope-specific CD4+ T-cells of an anti-CD20-treated patient with prolonged viral positivity in direct comparison to an immunocompetent patient through an MHC class II DRB1*11:01 Tetramer analysis. We detected a high and stable SARS-CoV-2 membrane-specific CD4+ T-cell response in both patients, with higher frequencies of virus-specific CD4+ T-cells in the B-cell-depleted patient. However, we found an altered virus-specific CD4+ T-cell memory phenotype in the B-cell-depleted patient that was skewed towards late differentiated memory T-cells, as well as reduced frequencies of SARS-CoV-2-specific CD4+ T-cells with CD45RA− CXCR5+ PD-1+ circulating T follicular helper cell (cTFH) phenotype. Furthermore, we observed a delayed contraction of CD127− virus-specific effector cells. The expression of the co-inhibitory receptors TIGIT and LAG-3 fluctuated on the virus-specific CD4+ T-cells of the patient, but were associated with the inflammation markers IL-6 and CRP. Our findings indicate that, despite B-cell depletion and a lack of B-cell—T-cell interaction, a robust virus-specific CD4+ T-cell response can be primed that helps to control the viral replication, but which is not sufficient to fully abrogate the infection
Scent dog identification of SARS-CoV-2 infections in different body fluids
Background!#!The main strategy to contain the current SARS-CoV-2 pandemic remains to implement a comprehensive testing, tracing and quarantining strategy until vaccination of the population is adequate. Scent dogs could support current testing strategies.!##!Methods!#!Ten dogs were trained for 8 days to detect SARS-CoV-2 infections in beta-propiolactone inactivated saliva samples. The subsequent cognitive transfer performance for the recognition of non-inactivated samples were tested on three different body fluids (saliva, urine, and sweat) in a randomised, double-blind controlled study.!##!Results!#!Dogs were tested on a total of 5242 randomised sample presentations. Dogs detected non-inactivated saliva samples with a diagnostic sensitivity of 84% (95% CI: 62.5-94.44%) and specificity of 95% (95% CI: 93.4-96%). In a subsequent experiment to compare the scent recognition between the three non-inactivated body fluids, diagnostic sensitivity and specificity were 95% (95% CI: 66.67-100%) and 98% (95% CI: 94.87-100%) for urine, 91% (95% CI: 71.43-100%) and 94% (95% CI: 90.91-97.78%) for sweat, 82% (95% CI: 64.29-95.24%), and 96% (95% CI: 94.95-98.9%) for saliva respectively.!##!Conclusions!#!The scent cognitive transfer performance between inactivated and non-inactivated samples as well as between different sample materials indicates that global, specific SARS-CoV-2-associated volatile compounds are released across different body secretions, independently from the patient's symptoms. All tested body fluids appear to be similarly suited for reliable detection of SARS-CoV-2 infected individuals