16 research outputs found

    Effect of Nucleus Basalis Magnocellularis Lesions on Memory and Hippocampal Brain-Derived Neurotrophic Factor, IL-1β, Glucose, and Corticosterone Levels in Adult Rats

    Get PDF
       Background: The nucleus basalis magnocellularis (NBM) sends projections to the hippocampus that are implicated in learning and memory formation. Despite ample evidence proposing that cognitive function impairment related to neurodegeneration, it may result from alteration of biochemical substances. We aimed to investigate the effects of NBM lesions on the hippocampal interleukin-1beta (IL-1β), brain-derived neurotrophic factor (BDNF), and corticosterone levels, as inflammation markers, and hallmarks of neurodegeneration, stress, and metabolic status. Methods: Thirty-six male Wistar rats were randomly put in control, sham, and NBM-lesioned groups. After inducing the lesion using an intra-NBM injection of 10 μg ibotenic acid (5 μg/μL, each side) in rats, memory was estimated using the passive avoidance test. Moreover, serum and hippocampal IL-1β levels, as well as the hippocampal corticosterone, BDNF, and glucose levels were measured after 42 days. Results: Findings indicated a significant impairment of retention at different intervals in the NBM-lesioned group. BDNF decreased whereas corticosterone, glucose, and IL-1β levels increased in the hippocampus. Also, the levels of serum IL-1β, hippocampal BDNF, corticosterone, and glucose had significant correlations with hippocampal IL-1β levels. Conclusion: The synchronous alterations of some hippocampal factors, including BDNF, corticosterone, IL-1β, and glucose, caused by NBM lesion suggest that their interaction might play a significant role in neurodegeneration and relevant learning and memory impairments

    The effects of concurrent treatment of silymarin and lactulose on memory changes in cirrhotic male rats

    Get PDF
    Introduction: Chronic liver disease frequently accompanied by hepatic encephalopathy (HE). Changes in the permeability of the blood-brain barrier in HE, make an easier entrance of ammonia among other substances to the brain, which leads to neurotransmitter disturbances. Lactulose (LAC), causes better defecation and makes ammonia outreach of blood. Silymarin (SM) is a known standard drug for liver illnesses. The purpose of this research was to determine the results of LAC and SM combined treatment, on the changes in memory of cirrhotic male rats. Methods: The cirrhotic model established by treatment with thioacetamide (TAA) for 18 weeks. Cirrhotic rats randomized to four groups (n = 7): TAA group (received drinking water), LAC group (2 g/kg/d LAC in drinking water), SM group (50 mg/kg/d SM by food), SM+ LAC group (similar combined doses of both compounds) for 8 weeks. The control group received drinking water. The behavior examined by wire hanging (WH), passive avoidance (PA), and open field (OF) tests. Results: Our findings showed that treatment with SM+LAC effectively increased PA latency, compared with the control group. The results showed that the administration of LAC and SM+LAC affected the number of lines crossed, the total distance moved and velocity in the OF tests. Conclusion: SM and LAC have anti-inflammatory effects that are memory changing. It may be due to their useful effects. These results indicated that SM+LAC restored memory disturbance and irritated mood in the cirrhotic rats. Comparable neuroprotection was never previously informed. Such outcomes are extremely promising and indicate the further study of SM+LAC

    Effects of aqueous saffron extract on glucoregulation as well as hepatic agt and TNF-α gene expression in rats subjected to sub-chronic stress

    No full text
    Background: Stress and saffron seem to affect glucoregulation mechanisms and insulin resistance in different ways. Impacts of the aqueous saffron extract were investigated on serum glucose levels, serum insulin levels, the homeostatic model assessment of β-cell function (HOMA-B), the homeostatic model assessment of insulin resistance (HOMA-IR), adrenal weight, and hepatic gene expression of angiotensinogen (Agt) and tumor necrosis factor-α (TNF-α) in rats under sub-chronic stress. Materials and Methods: Forty-two male rats were divided into six groups: control, restraint stress (6h/day for seven days), saffron (30 and 60 mg/kg) treatments for seven days, and post-stress saffron (30 and 60 mg/kg) treatments for seven days. The serum glucose and insulin levels, hepatic gene expressions of Agt and TNF-α, HOMA-IR, HOMA-B, and adrenal gland weight were measured. Results: One-week recovery following sub-chronic stress led to non-significant hyperglycemia, hyperinsulinemia, and insulin resistance. The hepatic Agt and TNF-α mRNA levels increased significantly in this group. Saffron administration led to enhanced hepatic Agt mRNA in the non-stressed subjects. In addition, serum glucose levels, insulin resistance, and hepatic Agt gene expression significantly increased in stress-saffron groups. The hepatic TNF-α gene expression was reduced only in the stress-saffron 60 group. Conclusion: Saffron treatment after sub-chronic stress not only did not improve glucose tolerance but also enhanced insulin resistance. It indicated the interaction of saffron and sub-chronic stress to promote renin-angiotensin system activity. In addition, the saffron treatment decreased TNF-α gene expression after sub-chronic stress. The synergistic stimulating effect of saffron and sub-chronic stress on gene expression of hepatic Agt led to insulin resistance and hyperglycemia

    The effects of CCK-8S on spatial memory and long-term potentiation at CA1 during induction of stress in rats

    No full text
    Objective(s): Cholecystokinin (CCK) has been proposed as a mediator in stress. However, it is still not fully documented what are its effects. We aimed to evaluate the effects of systemic administration of CCK exactly before induction of stress on spatial memory and synaptic plasticity at CA1 in rats. Materials and Methods: Male Wistar rats were divided into 4 groups: the control, the control-CCK, the stress and the stress-CCK. Restraint stress was induced 6 hr per day, for 24 days. Cholecystokinin sulfated octapeptide (CCK-8S) was injected (1.6 µg/kg, IP) before each session of stress induction. Spatial memory was evaluated by Morris water maze test. Long term potentiation (LTP) in Schaffer collateral-CA1 synapses was assessed (by 100 Hz tetanization) in order to investigate synaptic plasticity. Results: Stress impaired spatial memory significantly (

    The Protective Effects of Crocin on Input-Output Functions and Long-term Potentiation of Hippocampal CA1 Area in Rats Exposed to Chronic Social Isolated Stress

    No full text
    Introduction: The lack of social communication is associated with the primary risk of proper brain functions. It is reported that crocin helps relieve this problem. The present study examined the protective effect of two doses of crocin on Long-term potentiation (LTP) of hippocampal cornu ammonis 1 (CA1) area as a cellular mechanism in rats exposed to chronic social isolated stress. Methods: Rats were assigned to the control, sham, isolation stress, and two stress groups (receiving 30 and 60 mg/kg crocin). Chronic isolation stress (CIS) was induced 6 h/d, and crocin was administrated for 21 days. The field excitatory postsynaptic potential (fEPSP) slope and amplitude were measured by input/output functions and LTP induction in the CA1 area of the hippocampus. Also, the corticosterone and glucose levels were assayed in the hippocampus and frontal cortex. Results: The slope and amplitude of fEPSP severity were impaired in both input/output and LTP responses in the CIS group. Crocin at a dose of 30 and particularly 60 mg/kg improved input/output and LTP responses in the CIS group. Also, the corticosterone levels significantly increased in the frontal cortex and especially the hippocampus. In contrast, only a high dose of crocin decreased hippocampal corticosterone levels in the CIS condition. Finally, the glucose levels did not change in the hippocampus and frontal cortex in all experimental groups.  Conclusion: The chronic isolation stress impaired neural excitability and Long-term plasticity in the CA1 area due to elevated corticosterone in the hippocampus and probably the frontal cortex. The low and high doses of crocin improved excitability and Long-term plasticity in the chronic isolation stress group by only decreasing corticosterone levels in the hippocampus, but not the frontal cortex

    Protective Effects of Long-Term Escitalopram Administration on Memory and Hippocampal <i>BDNF</i> and <i>BCL-2</i> Gene Expressions in Rats Exposed to Predictable and Unpredictable Chronic Mild Stress

    No full text
    Stress and escitalopram (an anti-stress medication) can affect brain functions and related gene expression. This study investigated the protective effects of long-term escitalopram administration on memory, as well as on hippocampal BDNF and BCL-2 gene expressions in rats exposed to predictable and unpredictable chronic mild stress (PCMS and UCMS, respectively). Male rats were randomly assigned to different groups: control (Co), sham (Sh), predictable and unpredictable stress (PSt and USt, respectively; 2 h/day for 21 consecutive days), escitalopram (Esc; 10 mg/kg for 21 days), and predictable and unpredictable stress with escitalopram (PSt-Esc and USt-Esc, respectively). The passive avoidance test was used to assess behavioral variables. The expressions of the BDNF and BCL-2 genes were assessed using real-time quantitative PCR. Latency significantly decreased in the PSt and USt groups. Additionally, latency showed significant improvement in the PSt-Esc group compared to the PSt group. The expression of the BDNF gene significantly decreased only in the USt group. BDNF gene expression significantly increased in the PSt-Esc and USt-Esc groups compared to their respective stress-related groups, whereas the expression of the BCL-2 gene did not change significantly in both PSt-Esc and USt-Esc groups. PCMS and UCMS had devastating effects on memory. Escitalopram improved memory only under PCMS conditions. PCMS and UCMS exhibited fundamental differences in hippocampal BDNF and BCL-2 gene expressions. Furthermore, escitalopram increased hippocampal BDNF gene expression in the PCMS and UCMS subjects. Hence, neurogenesis occurred more significantly than anti-apoptosis under both PCMS and UCMS conditions with escitalopram

    Effect of Aerobic Exercise on Morphine Self-administration and Pain Modulation in Rats

    No full text
    Background: Exercise reverses retention deficit induced by morphine. The present study investigated the effect of aerobic exercise on tolerance to morphine usage and pain modulation. Materials and Methods: Male Wistar rats were divided into four groups as follows: (1) saline group (S), (2) morphine group (M), (3) saline + exercise (S + E), and (4) morphine + exercise group (M + E). The rats were initially trained to receive small pellets of food by pressing an active lever in the self-administration apparatus. The tail-flick and hot-plate tests were used for pain assessment. To perform the experiment, the jugular vein was exposed and cannulated. After recovery, the animals were placed in the self-administration apparatus and allowed to self-administer morphine in 2 h sessions over 11 consecutive days. Results: The morphine group was found to record a higher number of active lever pressings than did the saline one while this parameter decreased in the morphine + exercise group compared with the morphine one. Moreover, the morphine + exercise exhibited lowered pain sensitivity as evidenced to have reduced morphine use in the hot plate test. Conclusion: The exercise might be suggested to reduce using of morphine and modulate pain probably through the release of endogenous opioid

    The effect of treadmill running on passive avoidance learning in animal model of Alzheimer disease

    No full text
    Background : Alzheimer′s disease was known as a progressive neurodegenerative disorder in the elderly and is characterized by dementia and severe neuronal loss in the some regions of brain such as nucleus basalis magnocellularis. It plays an important role in the brain functions such as learning and memory. Loss of cholinergic neurons of nucleus basalis magnocellularis by ibotenic acid can commonly be regarded as a suitable model of Alzheimer′s disease. Previous studies reported that exercise training may slow down the onset and progression of memory deficit in neurodegenerative disorders. This research investigates the effects of treadmill running on acquisition and retention time of passive avoidance deficits induced by ibotenic acid nucleus basalis magnocellularis lesion. Methods : Male Wistar rats were randomly selected and divided into five groups as follows: Control, sham, Alzheimer, exercise before Alzheimer, and exercise groups. Treadmill running had a 21 day period and Alzheimer was induced by 5 μg/μl bilateral injection of ibotenic acid in nucleus basalis magnocellularis. Results : Our results showed that ibotenic acid lesions significantly impaired passive avoidance acquisition ( P < 0.01) and retention ( P < 0.001) performance, while treadmill running exercise significantly ( P < 0.001) improved passive avoidance learning in NBM-lesion rats. Conclusion : Treadmill running has a potential role in the prevention of learning and memory impairments in NBM-lesion rats

    Effect of the co-administration of glucose with morphine on glucoregulatory hormones and causing of diabetes mellitus in rats

    No full text
    Background: Morphine is related to dysregulation of serum hormone levels. In addition, addict subjects interest to sugar intake. Therefore, this study investigated the effect of co-administration of glucose with Mo on the glucoregulatory hormones and causing of diabetes mellitus in rats. Materials and Methods: Male rats were randomly divided into four groups including, control, morphine, Morphine-Glucose and diabetes groups. Morphine was undergone through doses of 10, 20, 30, 40, 50, and 60 mg/kg, respectively on days 1, 2, 3, 4, 5, and 6. Then, dose of 60 mg/kg was used repeated for 20 extra days. The Morphine-Glucose group received the same doses of morphine plus 1 g/kg glucose per day. Diabetes was induced by intraperitoneal injection of 65 mg/kg streptozotocin. At the end of experiment, the serum insulin, glucagon, growth hormone (GH), cortisol, and glucose levels were measured. The homeostasis model assessment (HOMA) indexes concluding the HOMA-insulin resistance (HOMA-IR) and HOMA-β were evaluated. Results: Morphine insignificantly induced a hyperglycemia condition and insulin resistance. Whereas, the beta-cell functions significantly (P < 0.05) decreased only in morphine group. The co-administration of glucose slightly increased the GH, and increased insulin and cortisol levels significantly (P < 0.05 and P < 0.01; respectively) in the Morphine-Glucose group. Furthermore, the co-administration of glucose with morphine could nearly modulate the morphine effects on body weight, glucose, and glucagon levels. Conclusion: It is probable that the co-administration of glucose with morphine modulate the serum glucose levels by stimulating the beta-cell functions and to increase insulin secretion

    Effect of Crocin, Exercise, and Crocin-accompanied Exercise on Learning and Memory in Rats under Chronic Unpredictable Stress

    No full text
    Background: Stress affects brain functions and induces psychological disorders. Previous studies have indicated different effects of crocin and exercise on the improvement of memory in some types of stress. The present study investigated the effect of crocin, exercise, and crocin-accompanied exercise on learning, memory, and memory consolidation in rats under chronic unpredictable stress (CUS). Materials and Methods: Male rats were randomly allocated to different groups: control, sham, stress, stress-exercise, stress-crocin, and stress-crocin-accompanied exercise groups. The CUS and treadmill running were applied 2 h/day and 1 h/day, respectively, for 21 days. Crocin (30 mg/kg) was daily intraperitoneally injected to the rats and their behavioral variables were evaluated as a brain function using the passive avoidance test. Results: Results showed that the CUS significantly decreased learning and memory compared to the control group, while crocin alone and crocin-accompanied exercise significantly improved learning and memory compared to the stressed group. It was found that exercise alone caused learning but did not improve memory in unpredictable stress rats. Conclusion: The data indicated that unpredictable stress had very destructive effects on the brain functions. Furthermore, unlike exercise, crocin improved memory under unpredictable stress conditions. Overall, it seems that the beneficial effects of crocin-accompanied exercise on learning and memory were probably because of crocin, but not exercise
    corecore