2 research outputs found

    A comprehensive study on removal of cadmium from aqueous solution by using mesoporous SBA-15 functionalized by 1,5-diphenyl carbazide: experimental design, kinetic, thermodynamic, and isotherm aspects

    Get PDF
    In this study, a new adsorbent, which was synthesized by using SBA-15Santa Barbara Amorphous. modified with 1,5-diphenyl carbazide, was employed to extract cadmium (Cd) from aquatic systems. First, the sorbent was identified via various characterization techniques, and then the response surface methodology approach was applied for modeling and optimizing the adsorption performance of the sorbent. Under optimum conditions (pH=5.75\mathrm{pH}=5.75, an adsorbent dose of 4.55 mg, and a Cd concentration of 25.39 mg/L), an adsorption capacity of 160 mg/g was obtained. In addition, the sorption process was fast; it attained equilibrium in 25.39 min. Furthermore, the sorbent regenerated by nitric acid was reused without any significant loss of adsorption capacity. Finally, the experimental data were studied by different isotherm models and well described by the Langmuir model

    A comprehensive study on removal of cadmium from aqueous solution by using mesoporous SBA-15 functionalized by 1,5-diphenyl carbazide: experimental design, kinetic, thermodynamic, and isotherm aspects

    Get PDF
    In this study, a new adsorbent, which was synthesized by using SBA-15Santa Barbara Amorphous. modified with 1,5-diphenyl carbazide, was employed to extract cadmium (Cd) from aquatic systems. First, the sorbent was identified via various characterization techniques, and then the response surface methodology approach was applied for modeling and optimizing the adsorption performance of the sorbent. Under optimum conditions (pH=5.75\mathrm{pH}=5.75, an adsorbent dose of 4.55 mg, and a Cd concentration of 25.39 mg/L), an adsorption capacity of 160 mg/g was obtained. In addition, the sorption process was fast; it attained equilibrium in 25.39 min. Furthermore, the sorbent regenerated by nitric acid was reused without any significant loss of adsorption capacity. Finally, the experimental data were studied by different isotherm models and well described by the Langmuir model
    corecore