4 research outputs found
Predicting the fire-induced structural performance of steel tube columns filled with SFRC-enhanced concrete: using artificial neural networks approach
Predicting the axial Shortening strength of concrete-filled steel tubular (CFST) columns is an important problem that this study attempts to solve for civil engineering projects. We suggest using a deep learning-based artificial neural network (ANN) model to address this issue, taking into account the intricate relationship between steel tube and core concrete. The model, called ANN-SFRC (Steel Fibre Reinforced Concrete), surpasses an R2 threshold of 0.90 and achieves impressive R2 values across different types of CFST columns. Compared to traditional linear regression methods, the ANN-SFRC model significantly improves accuracy, with an observed inaccuracy of less than 3% compared to actual values. With its reliable approach to forecasting the behavior of CFST columns under axial compression, this high-performance instrument enhances safety and accuracy during the design and planning stages of civil engineering
BBAAS: Blockchain-Based Anonymous Authentication Scheme for Providing Secure Communication in VANETs
Smart driving has become conceivable due to the rapid growth of vehicular ad hoc networks. VANETs are considered as the main platform for providing safety road information and instant vehicle communication. Nevertheless, due to the open wireless nature of communication channels, VANET is susceptible to security attacks by malicious users. For this reason, secure anonymous authentication schemes are essential in VANETs. However, when vehicles reach a new roadside unit (RSU) coverage area, the vehicles need to perform reauthentication with the current RSU, which significantly diminishes the efficiency of the entire VANET. Therefore, the introduction of blockchain technology has created opportunities for VANETs to resolve the aforementioned challenges. Due to the decentralized nature of blockchain technology, rapid reauthentication of vehicles is achieved in this paper through secure authentication code transfer between the consecutive RSUs. The security strength of the proposed blockchain-based anonymous authentication scheme against various harmful security attacks is proven in the security analysis section to ensure that it provides better security. In addition, blockchain, as presented in the performance analysis section, is used to substantially diminish the computational cost compared to conventional authentication schemes