6 research outputs found

    Neuroimaging genomics in psychiatry—a translational approach

    Get PDF
    Neuroimaging genomics is a relatively new field focused on integrating genomic and imaging data in order to investigate the mechanisms underlying brain phenotypes and neuropsychiatric disorders. While early work in neuroimaging genomics focused on mapping the associations of candidate gene variants with neuroimaging measures in small cohorts, the lack of reproducible results inspired better-powered and unbiased large-scale approaches. Notably, genome-wide association studies (GWAS) of brain imaging in thousands of individuals around the world have led to a range of promising findings. Extensions of such approaches are now addressing epigenetics, gene-gene epistasis, and gene-environment interactions, not only in brain structure, but also in brain function. Complementary developments in systems biology might facilitate the translation of findings from basic neuroscience and neuroimaging genomics to clinical practice. Here, we review recent approaches in neuroimaging genomics-we highlight the latest discoveries, discuss advantages and limitations of current approaches, and consider directions by which the field can move forward to shed light on brain disorders

    A review of systems biology research of anxiety disorders

    No full text
    The development of “omic” technologies and deep phenotyping may facilitate a systems biology approach to understanding anxiety disorders. Systems biology approaches incorporate data from multiple modalities (e.g., genomic, neuroimaging) with functional analyses (e.g., animal and tissue culture models) and mathematical modeling (e.g., machine learning) to investigate pathological biophysical networks at various scales. Here we review: i) the neurobiology of anxiety disorders; ii) how systems biology approaches have advanced this work; and iii) the clinical implications and future directions of this research. Systems biology approaches have provided an improved functional understanding of candidate biomarkers and have suggested future potential for refining the diagnosis, prognosis, and treatment of anxiety disorders. The systems biology approach for anxiety disorders is, however, in its infancy and in some instances is characterized by insufficient power and replication. The studies reviewed here represent important steps to further untangling the pathophysiology of anxiety disorders

    The Genetic Architecture of Amygdala Nuclei

    No full text
    BACKGROUND: Whereas genetic variants influencing total amygdala volume have been identified, the genetic architecture of its distinct nuclei has yet to be explored. We aimed to investigate whether increased phenotypic specificity through nuclei segmentation aids genetic discoverability and elucidates the extent of shared genetic architecture and biological pathways with related disorders. METHODS: T1-weighted brain magnetic resonance imaging scans (N = 36,352, 52% female) from the UK Biobank were segmented into 9 amygdala nuclei with FreeSurfer (version 6.1). Genome-wide association analyses were performed on the entire sample, a European-only subset (n = 31,690), and a generalization (transancestry) subset (n = 4662). We estimated single nucleotide polymorphism-based heritability; derived polygenicity, discoverability, and power estimates; and investigated genetic correlations and shared loci with psychiatric disorders. RESULTS: The heritability of the nuclei ranged from 0.17 to 0.33. Across the whole amygdala and the nuclei volumes, we identified 28 novel genome-wide significant (p < 5 × 10 ) loci in the European analysis, with significant en masse replication for the whole amygdala and central nucleus volumes in the generalization analysis, and we identified 10 additional candidate loci in the combined analysis. The central nucleus had the highest statistical power for discovery. The significantly associated genes and pathways showed unique and shared effects across the nuclei, including immune-related pathways. Shared variants were identified between specific nuclei and autism spectrum disorder, Alzheimer's disease, Parkinson's disease, bipolar disorder, and schizophrenia. CONCLUSIONS: Through investigation of amygdala nuclei volumes, we have identified novel candidate loci in the neurobiology of amygdala volume. These nuclei volumes have unique associations with biological pathways and genetic overlap with psychiatric disorders

    Neuroimaging genomics in psychiatry—a translational approach

    No full text
    corecore