42 research outputs found

    Incorporating Hydrologic Data and Ecohydrologic Relationships into Ecological Site Descriptions

    Get PDF
    The purpose of this paper is to recommend a framework and methodology for incorporating hydrologic data and ecohydrologic relationships in Ecological Site Descriptions (ESDs) and thereby enhance the utility of ESDs for assessing rangelands and guiding resilience-based management strategies. Resilience-based strategies assess and manage ecological state dynamics that affect state vulnerability and, therefore, provide opportunities to adapt management. Many rangelands are spatially heterogeneous or sparsely vegetated where the vegetation structure strongly influences infiltration and soil retention. Infiltration and soil retention further influence soil water recharge, nutrient availability, and overall plant productivity. These key ecohydrologic relationships govern the ecologic resilience of the various states and community phases on many rangeland ecological sites (ESs) and are strongly affected by management practices, land use, and disturbances. However, ecohydrologic data and relationships are often missing in ESDs and state-and-transition models (STMs). To address this void, we used literature to determine the data required for inclusion of key ecohydrologic feedbacks into ESDs, developed a framework and methodology for data integration within the current ESD structure, and applied the framework to a select ES for demonstrative purposes. We also evaluated the utility of the Rangeland Hydrology and Erosion Model (RHEM) for assessment and enhancement of ESDs based in part on hydrologic function. We present the framework as a broadly applicable methodology for integrating ecohydrologic relationships and feedbacks into ESDs and resilience-based management strategies. Our proposed framework increases the utility of ESDs to assess rangelands, target conservation and restoration practices, and predict ecosystem responses to management. The integration of RHEM technology and our suggested framework on ecohydrologic relations expands the ecological foundation of the overall ESD concept for rangeland management and is well aligned with resilience-based, adaptive management of US rangelands. The proposed enhancement of ESDs will improve communication between private land owners and resource managers and researchers across multiple disciplines in the field of rangeland management

    Loss of the Urothelial Differentiation Marker FOXA1 Is Associated with High Grade, Late Stage Bladder Cancer and Increased Tumor Proliferation

    Get PDF
    Approximately 50% of patients with muscle-invasive bladder cancer (MIBC) develop metastatic disease, which is almost invariably lethal. However, our understanding of pathways that drive aggressive behavior of MIBC is incomplete. Members of the FOXA subfamily of transcription factors are implicated in normal urogenital development and urologic malignancies. FOXA proteins are implicated in normal urothelial differentiation, but their role in bladder cancer is unknown. We examined FOXA expression in commonly used in vitro models of bladder cancer and in human bladder cancer specimens, and used a novel in vivo tissue recombination system to determine the functional significance of FOXA1 expression in bladder cancer. Logistic regression analysis showed decreased FOXA1 expression is associated with increasing tumor stage (p<0.001), and loss of FOXA1 is associated with high histologic grade (p<0.001). Also, we found that bladder urothelium that has undergone keratinizing squamous metaplasia, a precursor to the development of squamous cell carcinoma (SCC) exhibited loss of FOXA1 expression. Furthermore, 81% of cases of SCC of the bladder were negative for FOXA1 staining compared to only 40% of urothelial cell carcinomas. In addition, we showed that a subpopulation of FOXA1 negative urothelial tumor cells are highly proliferative. Knockdown of FOXA1 in RT4 bladder cancer cells resulted in increased expression of UPK1B, UPK2, UPK3A, and UPK3B, decreased E-cadherin expression and significantly increased cell proliferation, while overexpression of FOXA1 in T24 cells increased E-cadherin expression and significantly decreased cell growth and invasion. In vivo recombination of bladder cancer cells engineered to exhibit reduced FOXA1 expression with embryonic rat bladder mesenchyme and subsequent renal capsule engraftment resulted in enhanced tumor proliferation. These findings provide the first evidence linking loss of FOXA1 expression with histological subtypes of MIBC and urothelial cell proliferation, and suggest an important role for FOXA1 in the malignant phenotype of MIBC

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    Attenuation of diet-induced hypothalamic inflammation following bariatric surgery in female mice

    No full text
    Abstract Background Exposure of rodents to chronic high-fat diet (HFD) results in upregulation of inflammatory markers and proliferation of microglia within the mediobasal hypothalamus. Such hypothalamic inflammation is associated with metabolic dysfunction, central leptin resistance, and maintenance of obesity. Bariatric surgeries result in long-term stable weight loss and improved metabolic function. However, the effects of such surgical procedures on HFD-induced hypothalamic inflammation are unknown. We sought to characterize the effects of two bariatric surgical procedures, Roux-en-Y gastric bypass (RYGB) and biliary diversion (BD-IL), in female mice with particular emphasis on HFD-induced hypothalamic inflammation and microgliosis. Methods RYGB and BD-IL were performed on diet-induced obese (DIO) mice. Quantitative RT-PCR and fluorescent microscopy were used to evaluate hypothalamic inflammatory gene expression and microgliosis. Results were compared to lean (CD), DIO sham-surgerized mice (DIO-SHAM), and dietary weight loss (DIO-Rev) controls. Results In female mice, RYGB and BD-IL result in normalization of hypothalamic inflammatory gene expression and microgliosis within 8 weeks of surgery, despite ongoing exposure to HFD. Paralleling these results, the hypothalamic expression levels of the orexigenic neuropeptide Agrp and the anorexic response of surgical mice to exogenous leptin were comparable to lean controls (CD). In contrast, results from DIO-Rev mice were comparable to DIO-SHAM mice, despite transition back to standard rodent show and normalization of weight. Conclusion Bariatric surgery attenuates HFD-induced hypothalamic inflammation and microgliosis and restores leptin sensitivity, despite ongoing exposure to HFD
    corecore