76 research outputs found
Control of PTH secretion by the TRPC1 ion channel
Familial Hypocalciuric Hypercalcemia (FHH) is a genetic condition associated with hypocalciuria, hypercalcemia and in some cases inappropriately high levels of circulating parathyroid hormone (PTH). FHH is associated with inactivating mutations in CaSR encoding the Ca2+ sensing receptor (CaSR), a G protein coupled receptor (GPCR) and GNA11 encoding G protein subunit alpha 11 (Gα11), implicating defective GPCR signaling as the root pathophysiology for FHH. However, the downstream mechanism by which CaSR activation inhibits PTH production/secretion is incompletely understood. Here, we show that mice lacking the transient receptor potential canonical channel 1 (TRPC1) develop chronic hypercalcemia, hypocalciuria, and elevated PTH levels mimicking human FHH. Ex vivo and in vitro studies reveal that TRPC1 serves a necessary and sufficient mediator to suppress PTH secretion from parathyroid glands (PTG) downstream of CaSR in response to high extracellular Ca2+ concentration. Gα11 physically interacts with both the N- and C-termini of TRPC1 and enhances CaSR-induced TRPC1 activity in transfected cells. These data identify TRPC1-mediated Ca2+ signaling as an essential component of the cellular apparatus controlling PTH secretion in the PTG downstream of CaSR
Tissue-specific calibration of extracellular matrix material properties by transforming growth factor-beta and Runx2 in bone is required for hearing
Publisher version: http://www.nature.com/embor/journal/v11/n10/full/embor2010135.htmlDA - 20100917 IS - 1469-3178 (Electronic) IS - 1469-221X (Linking) LA - ENG PT - JOURNAL ARTICLEDA - 20100917 IS - 1469-3178 (Electronic) IS - 1469-221X (Linking) LA - ENG PT - JOURNAL ARTICLEDA - 20100917 IS - 1469-3178 (Electronic) IS - 1469-221X (Linking) LA - ENG PT - JOURNAL ARTICLEPhysical cues, such as extracellular matrix stiffness, direct cell differentiation and support tissue-specific function. Perturbation of these cues underlies diverse pathologies, including osteoarthritis, cardiovascular disease and cancer. However, the molecular mechanisms that establish tissue-specific material properties and link them to healthy tissue function are unknown. We show that Runx2, a key lineage-specific transcription factor, regulates the material properties of bone matrix through the same transforming growth factor-beta (TGFbeta)-responsive pathway that controls osteoblast differentiation. Deregulated TGFbeta or Runx2 function compromises the distinctly hard cochlear bone matrix and causes hearing loss, as seen in human cleidocranial dysplasia. In Runx2(+/-) mice, inhibition of TGFbeta signalling rescues both the material properties of the defective matrix, and hearing. This study elucidates the unknown cause of hearing loss in cleidocranial dysplasia, and demonstrates that a molecular pathway controlling cell differentiation also defines material properties of extracellular matrix. Furthermore, our results suggest that the careful regulation of these properties is essential for healthy tissue functio
Bone Microenvironment Specific Roles of ITAM Adapter Signaling during Bone Remodeling Induced by Acute Estrogen-Deficiency
Immunoreceptor tyrosine-based activation motif (ITAM) signaling mediated by DAP12 or Fcε receptor Iγ chain (FcRγ) have been shown to be critical for osteoclast differentiation and maturation under normal physiological conditions. Their function in pathological conditions is unknown. We studied the role of ITAM signaling during rapid bone remodeling induced by acute estrogen-deficiency in wild-type (WT), DAP12-deficient (DAP12-/-), FcRγ-deficient (FcRγ-/-) and double-deficient (DAP12-/-FcRγ-/-) mice. Six weeks after ovariectomy (OVX), DAP12-/-FcRγ-/- mice showed resistance to lumbar vertebral body (LVB) trabecular bone loss, while WT, DAP12-/- and FcRγ-/- mice had significant LVB bone loss. In contrast, all ITAM adapter-deficient mice responded to OVX with bone loss in both femur and tibia of approximately 40%, relative to basal bone volumes. Only WT mice developed significant cortical bone loss after OVX. In vitro studies showed microenvironmental changes induced by OVX are indispensable for enhanced osteoclast formation and function. Cytokine changes, including TGFβ and TNFα, were able to induce osteoclastogenesis independent of RANKL in BMMs from WT but not DAP12-/- and DAP12-/-FcRγ-/- mice. FSH stimulated RANKL-induced osteoclast differentiation from BMMs in WT, but not DAP12-/- and DAP12-/-FcRγ-/- mice. Our study demonstrates that although ITAM adapter signaling is critical for normal bone remodeling, estrogen-deficiency induces an ITAM adapter-independent bypass mechanism allowing for enhanced osteoclastogenesis and activation in specific bony microenvironments
DOK3 Negatively Regulates LPS Responses and Endotoxin Tolerance
Innate immune activation via Toll-like receptors (TLRs), although critical for host defense against infection, must be regulated to prevent sustained cell activation that can lead to cell death. Cells repeatedly stimulated with lipopolysaccharide (LPS) develop endotoxin tolerance making the cells hypo-responsive to additional TLR stimulation. We show here that DOK3 is a negative regulator of TLR signaling by limiting LPS-induced ERK activation and cytokine responses in macrophages. LPS induces ubiquitin-mediated degradation of DOK3 leading to SOS1 degradation and inhibition of ERK activation. DOK3 mice are hypersensitive to sublethal doses of LPS and have altered cytokine responses in vivo. During endotoxin tolerance, DOK3 expression remains stable, and it negatively regulates the expression of SHIP1, IRAK-M, SOCS1, and SOS1. As such, DOK3-deficient macrophages are more sensitive to LPS-induced tolerance becoming tolerant at lower levels of LPS than wild type cells. Taken together, the absence of DOK3 increases LPS signaling, contributing to LPS-induced tolerance. Thus, DOK3 plays a role in TLR signaling during both naïve and endotoxin-induced tolerant conditions
Fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin with gemtuzumab ozogamicin improves event-free survival in younger patients with newly diagnosed aml and overall survival in patients with npm1 and flt3 mutations
Purpose
To determine the optimal induction chemotherapy regimen for younger adults with newly diagnosed AML without known adverse risk cytogenetics.
Patients and Methods
One thousand thirty-three patients were randomly assigned to intensified (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin [FLAG-Ida]) or standard (daunorubicin and Ara-C [DA]) induction chemotherapy, with one or two doses of gemtuzumab ozogamicin (GO). The primary end point was overall survival (OS).
Results
There was no difference in remission rate after two courses between FLAG-Ida + GO and DA + GO (complete remission [CR] + CR with incomplete hematologic recovery 93% v 91%) or in day 60 mortality (4.3% v 4.6%). There was no difference in OS (66% v 63%; P = .41); however, the risk of relapse was lower with FLAG-Ida + GO (24% v 41%; P < .001) and 3-year event-free survival was higher (57% v 45%; P < .001). In patients with an NPM1 mutation (30%), 3-year OS was significantly higher with FLAG-Ida + GO (82% v 64%; P = .005). NPM1 measurable residual disease (MRD) clearance was also greater, with 88% versus 77% becoming MRD-negative in peripheral blood after cycle 2 (P = .02). Three-year OS was also higher in patients with a FLT3 mutation (64% v 54%; P = .047). Fewer transplants were performed in patients receiving FLAG-Ida + GO (238 v 278; P = .02). There was no difference in outcome according to the number of GO doses, although NPM1 MRD clearance was higher with two doses in the DA arm. Patients with core binding factor AML treated with DA and one dose of GO had a 3-year OS of 96% with no survival benefit from FLAG-Ida + GO.
Conclusion
Overall, FLAG-Ida + GO significantly reduced relapse without improving OS. However, exploratory analyses show that patients with NPM1 and FLT3 mutations had substantial improvements in OS. By contrast, in patients with core binding factor AML, outcomes were excellent with DA + GO with no FLAG-Ida benefit
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
A Comprehensive Review of Immunoreceptor Regulation of Osteoclasts.
Osteoclasts require coordinated co-stimulation by several signaling pathways to initiate and regulate their cellular differentiation. Receptor activator for NF-κB ligand (RANKL or TNFSF11), a tumor necrosis factor (TNF) superfamily member, is the master cytokine required for osteoclastogenesis with essential co-stimulatory signals mediated by immunoreceptor tyrosine-based activation motif (ITAM)-signaling adaptors, DNAX-associated protein 12 kDa size (DAP12) and FcεRI gamma chain (FcRγ). The ITAM-signaling adaptors do not have an extracellular ligand-binding domain and, therefore, must pair with ligand-binding immunoreceptors to interact with their extracellular environment. DAP12 pairs with a number of different immunoreceptors including triggering receptor expressed on myeloid cells 2 (TREM2), myeloid DAP12-associated lectin (MDL-1), and sialic acid-binding immunoglobulin-type lectin 15 (Siglec-15); while FcRγ pairs with a different set of receptors including osteoclast-specific activating receptor (OSCAR), paired immunoglobulin receptor A (PIR-A), and Fc receptors. The ligands for many of these receptors in the bone microenvironment remain unknown. Here, we will review immunoreceptors known to pair with either DAP12 or FcRγ that have been shown to regulate osteoclastogenesis. Co-stimulation and the effects of ITAM-signaling have turned out to be complex, and now include paradoxical findings that ITAM-signaling adaptor-associated receptors can inhibit osteoclastogenesis and immunoreceptor tyrosine-based inhibitory motif (ITIM) receptors can promote osteoclastogenesis. Thus, co-stimulation of osteoclastogenesis continues to reveal additional complexities that are important in the regulatory mechanisms that seek to maintain bone homeostasis
Inhibition of γ-secretase in adipocytes leads to altered IL-6 secretion and adipose inflammation
Adipocyte-mediated inflammatory signalling has been proposed to alter adipose physiology in obesity and Type 2 diabetes mellitus. Novel targets for alteration of inflammatory signalling are needed to improve obesity-related outcomes. The γ-secretase enzyme complex has been suggested to play a role both in adipocyte function as well as in immune regulation. We hypothesized that adipocyte-specific γ-secretase inhibition could alter the inflammatory makeup of adipose tissue. We found that genetic blockade of γ-secretase in adipocytes leads to a decrease in EMR1 (F4/80) expression, as a marker of macrophage presence, in adipose tissue without changes in expression of markers of other inflammatory cell types. To explore the mechanism by which adipocytes can alter macrophage function in vitro, fully differentiated 3T3-L1 adipocytes were treated with a γ-secretase inhibitor in the presence of lipopolysaccharide (LPS) and transcription of IL6 and ccl2 (MCP1) were quantified. IL-6 expression and secretion were significantly inhibited by γ-secretase blockade, with little effect on MCP1. Preconditioned media from 3T3-L1 adipocytes treated with a γ-secretase inhibitor also alters macrophage activation but did not affect macrophage translocation in vitro. Therefore, γ-secretase inhibition in fully differentiated adipocytes can alter IL-6 signalling to macrophages, consistent with our hypothesis that that γ-secretase is involved in adipocyte-initiated inflammatory signalling cascades
Screening for Important Base Identities in the Hairpin Ribozyme by In Vitro Selection for Cleavage
Random mutagenesis followed by an in vitro selection procedure was shown to be capable of identifying important bases of the hairpin ribozyme for cleavage of an RNA target sequence. The selection scheme enriched the RNA population for those molecules capable of efficient site-specific selfcleavage in the absence of ligation. Cleavable mutants were selected for all positions in loop 4 except for position A38, supporting the notion that A38 is an important base in the hairpin ribozyme. This has been confirmed by direct mutagenesis, validating the utility of this procedure. Thus, the method developed and reported here has utility for the selection of efficient hairpin ribozymes capable of highly efficient cleavage of a substrate RNA without a requirement for ribozyme-catalyzed ligation, conditions desired for many applications of catalytic RNA such as gene therapy
- …