17 research outputs found

    Histone H2BK123 monoubiquitination is the critical determinant for H3K4 and H3K79 trimethylation by COMPASS and Dot1

    Get PDF
    Histone H2B monoubiquitination by Rad6/Bre1 is required for the trimethylation of both histone H3K4 and H3K79 by COMPASS and Dot1 methyltransferases, respectively. The dependency of methylation at H3K4 and H3K79 on the monoubiquitination of H2BK123 was recently challenged, and extragenic mutations in the strain background used for previous studies or epitope-tagged proteins were suggested to be the sources of this discrepancy. In this study, we show that H3K4 and H3K79 methylation is solely dependent on H2B monoubiquitination regardless of any additional alteration to the H2B sequence or genome. Furthermore, we report that Y131, one of the yeast histone H2A/H2B shuffle strains widely used for the last decade in the field of chromatin and transcription biology, carries a wild-type copy of each of the HTA2 and HTB2 genes under the GAL1/10 promoter on chromosome II. Therefore, we generated the entire histone H2A and H2B alanine-scanning mutant strains in another background, which does not express wild-type histones

    H2B ubiquitylation is part of chromatin architecture that marks exon-intron structure in budding yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The packaging of DNA into chromatin regulates transcription from initiation through 3' end processing. One aspect of transcription in which chromatin plays a poorly understood role is the co-transcriptional splicing of pre-mRNA.</p> <p>Results</p> <p>Here we provide evidence that H2B monoubiquitylation (H2BK123ub1) marks introns in <it>Saccharomyces cerevisiae</it>. A genome-wide map of H2BK123ub1 in this organism reveals that this modification is enriched in coding regions and that its levels peak at the transcribed regions of two characteristic subgroups of genes. First, long genes are more likely to have higher levels of H2BK123ub1, correlating with the postulated role of this modification in preventing cryptic transcription initiation in ORFs. Second, genes that are highly transcribed also have high levels of H2BK123ub1, including the ribosomal protein genes, which comprise the majority of intron-containing genes in yeast. H2BK123ub1 is also a feature of introns in the yeast genome, and the disruption of this modification alters the intragenic distribution of H3 trimethylation on lysine 36 (H3K36me3), which functionally correlates with alternative RNA splicing in humans. In addition, the deletion of genes encoding the U2 snRNP subunits, Lea1 or Msl1, in combination with an <it>htb-K123R </it>mutation, leads to synthetic lethality.</p> <p>Conclusion</p> <p>These data suggest that H2BK123ub1 facilitates cross talk between chromatin and pre-mRNA splicing by modulating the distribution of intronic and exonic histone modifications.</p

    Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S. cerevisiae

    No full text
    Budding yeast centromeres are comprised of ∼125-bp DNA sequences that direct formation of the kinetochore, a specialized chromatin structure that mediates spindle attachment to chromosomes. We report here a novel role for the histone deposition complex chromatin assembly factor I (CAF-I) in building centromeric chromatin. The contribution of CAF-I to kinetochore function overlaps that of the Hir proteins, which have also been implicated in nucleosome formation and heterochromatic gene silencing. cacΔ hirΔ double mutant cells lacking both CAF-I and Hir proteins are delayed in anaphase entry in a spindle assembly checkpoint-dependent manner. Further, cacΔ and hirΔ deletions together cause increased rates of chromosome missegregation, genetic synergies with mutations in kinetochore protein genes, and alterations in centromeric chromatin structure. Finally, CAF-I subunits and Hir1 are enriched at centromeres, indicating that these proteins make a direct contribution to centromeric chromatin structures

    Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B

    No full text
    Covalent modifications of the histone N tails play important roles in eukaryotic gene expression. Histone acetylation, in particular, is required for the activation of a subset of eukaryotic genes through the targeted recruitment of histone acetyltransferases. We have reported that a histone C tail modification, ubiquitylation of H2B, is required for optimal expression of several inducible yeast genes, consistent with a role in transcriptional activation. H2B was shown to be ubiquitylated and then deubiquitylated at the GAL1 core promoter following galactose induction. We now show that the Rad6 protein, which catalyzes monoubiquitylation of H2B, is transiently associated with the GAL1 promoter upon gene activation, and that the period of its association temporally overlaps with the period of H2B ubiquitylation. Rad6 promoter association depends on the Gal4 activator and the Rad6-associated E3 ligase, Bre1, but is independent of the histone acetyltransferase, Gcn5. The SAGA complex, which contains a ubiquitin protease that targets H2B for deubiquitylation, is recruited to the GAL1 promoter in the absence of H2B ubiquitylation. The data suggest that Rad6 and SAGA function independently during galactose induction, and that the staged recruitment of these two factors to the GAL1 promoter regulates the ubiquitylation and deubiquitylation of H2B. We additionally show that both Rad6 and ubiquitylated H2B are absent from two regions of transcriptionally silent chromatin but present at genes that are actively transcribed. Thus, like histone H3 lysine 4 and lysine 79 methylation, two modifications that it regulates, Rad6-directed H2B ubiquitylation defines regions of active chromatin

    Histone H2B Ubiquitylation Is Associated with Elongating RNA Polymerase II

    Get PDF
    Rad6-mediated ubiquitylation of histone H2B at lysine 123 has been linked to transcriptional activation and the regulation of lysine methylation on histone H3. However, how Rad6 and H2B ubiquitylation contribute to the transcription and histone methylation processes is poorly understood. Here, we show that the Paf1 transcription elongation complex and the E3 ligase for Rad6, Bre1, mediate an association of Rad6 with the hyperphosphorylated (elongating) form of RNA polymerase II (Pol II). This association appears to be necessary for the transcriptional activities of Rad6, as deletion of various Paf1 complex members or Bre1 abolishes H2B ubiquitylation (ubH2B) and reduces the recruitment of Rad6 to the promoters and transcribed regions of active genes. Using the inducible GAL1 gene as a model, we find that the recruitment of Rad6 upon activation occurs rapidly and transiently across the gene and coincides precisely with the appearance of Pol II. Significantly, during GAL1 activation in an rtf1 deletion mutant, Rad6 accumulates at the promoter but is absent from the transcribed region. This fact suggests that Rad6 is recruited to promoters independently of the Paf1 complex but then requires this complex for entrance into the coding region of genes in a Pol II-associated manner. In support of a role for Rad6-dependent H2B ubiquitylation in transcription elongation, we find that ubH2B levels are dramatically reduced in strains bearing mutations of the Pol II C-terminal domain (CTD) and abolished by inactivation of Kin28, the serine 5 CTD kinase that promotes the transition from initiation to elongation. Furthermore, synthetic genetic array analysis reveals that the Rad6 complex interacts genetically with a number of known or suspected transcription elongation factors. Finally, we show that Saccharomyces cerevisiae mutants bearing defects in the pathway to H2B ubiquitylation display transcription elongation defects as assayed by 6-azauracil sensitivity. Collectively, our results indicate a role for Rad6 and H2B ubiquitylation during the elongation cycle of transcription and suggest a mechanism by which H3 methylation may be regulated

    Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8

    No full text
    Gene activation and repression regulated by acetylation and deacetylation represent a paradigm for the function of histone modifications. We provide evidence that, in contrast, histone H2B monoubiquitylation and its deubiquitylation are both involved in gene activation. Substitution of the H2B ubiquitylation site at Lys 123 (K123) lowered transcription of certain genes regulated by the acetylation complex SAGA. Gene-associated H2B ubiquitylation was transient, increasing early during activation, and then decreasing coincident with significant RNA accumulation. We show that Ubp8, a component of the SAGA acetylation complex, is required for SAGA-mediated deubiquitylation of histone H2B in vitro. Loss of Ubp8 in vivo increased both gene-associated and overall cellular levels of ubiquitylated H2B. Deletion of Ubp8 lowered transcription of SAGA-regulated genes, and the severity of this defect was exacerbated by codeletion of the Gcn5 acetyltransferase within SAGA. In addition, disruption of either ubiquitylation or Ubp8-mediated deubiquitylation of H2B resulted in altered levels of gene-associated H3 Lys 4 methylation and Lys 36 methylation, which have both been linked to transcription. These results suggest that the histone H2B ubiquitylation state is dynamic during transcription, and that the sequence of histone modifications helps to control transcription
    corecore