43 research outputs found

    LIS-less neurons don't even make it to the starting gate

    Get PDF
    The manuscript by Tsai et al. (935ā€“945) is a tour de force analysis of a controversial issue in developmental neurobiology, namely the molecular basis of the devastating human brain malformation, type I lissencephaly (Lis1) (Jellinger, K., and A. Rett. 1976. Neuropadiatrie. 7:66ā€“91). For several decades, defects in neuronal migration have been assumed to underlie all defects in cortical histogenesis. In the paper by Tsai et al., the authors use a variety of elegant approaches, including the first real-time imaging of cortical neurons with reduced levels of LIS1, to demonstrate that LIS1 and dynactin act as regulators of dynein during cortical histogenesis. A loss of LIS1 results in both a failure to exit the cortical germinal zone and abnormal neuronal process formation. Thus, the primary action of the mutation is to disrupt the production of neurons in the developing brain as well as their migration

    Embryonic Precursor Cells from the Rhombic Lip Are Specified to a Cerebellar Granule Neuron Identity

    Get PDF
    AbstractThe specification of diverse classes of neurons is critical to the development of the cerebellar cortex. Here, we describe the purification of early embryonic precursors of cerebellar granule neurons from the rhombic lip, the dorsal aspect of the midbrain/hindbrain region. Isolation of rhombic lip cells reveals a homogenous population of precursor cells that express general neuronal markers and the granule cell marker RU49, but fail to extend neurites or express differentiation markers. Differentiation is induced by coculture with external germinal layer (EGL) cells, or their membranes, suggesting that a local inducing factor acts after formation of the EGL. Thus, proliferating precursors within the rhombic lip are specified to be granule cells very early, with the availability of an inducing factor increasing over the course of development

    Activated Notch2 Signaling Inhibits Differentiation of Cerebellar Granule Neuron Precursors by Maintaining Proliferation

    Get PDF
    AbstractIn the developing cerebellar cortex, granule neuron precursors (GNPs) proliferate and commence differentiation in a superficial zone, the external granule layer (EGL). The molecular basis of the transition from proliferating precursors to immature differentiating neurons remains unknown. Notch signaling is an evolutionarily conserved pathway regulating the differentiation of precursor cells of many lineages. Notch2 is specifically expressed in proliferating GNPs in the EGL. Treatment of GNPs with soluble Notch ligand Jagged1, or overexpression of activated Notch2 or its downstream target HES1, maintains precursor proliferation. The addition of GNP mitogens Jagged1 or Sonic Hedgehog (Shh) upregulates the expression of HES1, suggesting a role for HES1 in maintaining precursor proliferation

    Myosin II Motors and F-Actin Dynamics Drive the Coordinated Movement of the Centrosome and Soma during CNS Glial-Guided Neuronal Migration

    Get PDF
    SummaryLamination of cortical regions of the vertebrate brain depends on glial-guided neuronal migration. The conserved polarity protein Par6Ī± localizes to the centrosome and coordinates forward movement of the centrosome and soma in migrating neurons. The cytoskeletal components that produce this unique form of cell polarity and their relationship to polarity signaling cascades are unknown. We show that F-actin and Myosin II motors are enriched inĀ the neuronal leading process and that Myosin II activity is necessary for leading process actin dynamics. Inhibition of Myosin II decreased the speed of centrosome and somal movement, whereas Myosin II activation increased coordinated movement. Ectopic expression or silencing of Par6Ī± inhibited Myosin II motors by decreasing Myosin light-chain phosphorylation. These findings suggest leading-process Myosin II may function to ā€œpullā€ the centrosomeĀ and soma forward during glial-guided migration byĀ a mechanism involving the conserved polarity protein Par6Ī±

    Mice lacking Astn2 have ASD-like behaviors and altered cerebellar circuit properties

    Get PDF
    Astrotactin 2 (ASTN2) is a transmembrane neuronal protein highly expressed in the cerebellum that functions in receptor trafficking and modulates cerebellar Purkinje cell (PC) synaptic activity. Individuals wit

    Gene Expression Profiling of Preplate Neurons Destined for the Subplate: Genes Involved in Transcription, Axon Extension, Neurotransmitter Regulation, Steroid Hormone Signaling, and Neuronal Survival

    Get PDF
    During mammalian corticogenesis a series of transient cell layers establish laminar architectonics. The preplate, which forms from the earliest-generated neurons, separates into the marginal zone and subplate layer. To provide a systematic screen for genes involved in subplate development and function, we screened lines of transgenic mice, generated using bacterial artificial chromosome methodology (GENSAT Project), to identify transgenic lines of mice that express the enhanced green fluorescent protein (EGFP) reporter in preplate neurons destined for the subplate. Gene expression profiling of RNA purified from EGFP-positive neurons identified over 200 genes with enriched expression in future subplate neurons. Major classes of subplate-enriched genes included genes involved in transcriptional processes, cortical development, cell and axon motility, protein trafficking and steroid hormone signaling. Additionally, we identified 10 genes related to degenerative diseases of the cerebral and cerebellar cortex. Cre recombinaseā€“based fate mapping of cells expressing Phosphodiesterase 1c (Pde1c) revealed beta-galactosidase positive cells in the ventricular zone, as well as the subplate, suggesting that subplate neurons and cortical projection neurons may be derived from common progenitors. These experiments therefore reveal genetic markers, which identify subplate neurons from the earliest stages of their development, and genes with enriched expression in subplate neurons during early stages of corticogenesis

    Lrp12/Mig13a Reveals Changing Patterns of Preplate Neuronal Polarity during Corticogenesis that Are Absent in Reeler Mutant Mice

    Get PDF
    During corticogenesis, the earliest generated neurons form the preplate, which evolves into the marginal zone and subplate. Lrp12/Mig13a, a mammalian gene related to the Caenorhabditis elegans neuroblast migration gene mig-13, is expressed in a subpopulation of preplate neurons that undergo ventrally directed tangential migrations in the preplate layer and pioneer axon projections to the anterior commissure. As the preplate separates, Lrp12/Mig13a-positive neurons polarize in the radial plane and form a pseudocolumnar pattern, prior to moving to a deeper position within the emerging subplate layer. These changes in neuronal polarity do not occur in reeler mutant mice, revealing the earliest known defect in reeler cortical patterning and suggesting that the alignment of preplate neurons into a pseudolayer facilitates the movement of later-born radially migrating neurons into the emerging cortical plate

    Riding the Cellular Highway: Cell Migration and Brain Development

    No full text
    The Rockefeller University Council Breakfast Meeting on December 4, 1996 Talk by Dr. Mary E. Hatten: Riding the Cellular Highway: Cell Migration and Brain Development
    corecore