360 research outputs found

    DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries

    Get PDF
    BACKGROUND: The centromeres in yeast (S. cerevisiae) are organized by short DNA sequences (125 bp) on each chromosome consisting of 2 conserved elements: CDEI and CDEIII spaced by a CDEII region. CDEI and CDEIII are critical sequence specific protein binding sites necessary for correct centromere formation and following assembly with proteins, are positioned near each other on a specialized nucleosome. Hegemann et al. BioEssays 1993, 15: 451–460 reported single base DNA mutants within the critical CDEI and CDEIII binding sites on the centromere of chromosome 6 and quantitated centromere loss of function, which they measured as loss rates for the different chromosome 6 mutants during cell division. Olson et al. Proc Natl Acad Sci USA 1998, 95: 11163–11168 reported the use of protein-DNA crystallography data to produce a DNA dinucleotide protein deformability energetic scale (PD-scale) that describes local DNA deformability by sequence specific binding proteins. We have used the PD-scale to investigate the DNA sequence dependence of the yeast chromosome 6 mutants' loss rate data. Each single base mutant changes 2 PD-scale values at that changed base position relative to the wild type. In this study, we have utilized these mutants to demonstrate a correlation between the change in DNA deformability of the CDEI and CDEIII core sites and the overall experimentally measured chromosome loss rates of the chromosome 6 mutants. RESULTS: In the CDE I and CDEIII core binding regions an increase in the magnitude of change in deformability of chromosome 6 single base mutants with respect to the wild type correlates to an increase in the measured chromosome loss rate. These correlations were found to be significant relative to 10(5 )Monte Carlo randomizations of the dinucleotide PD-scale applied to the same calculation. A net loss of deformability also tends to increase the loss rate. Binding site position specific, 4 data-point correlations were also created using the wild type sequence and the 3 associated alternate base mutants at each binding site position. These position specific slope magnitudes, or sensitivities, correlated with and reflected the underlying position symmetry of the DNA binding sequences. CONCLUSION: These results suggest the utility of correlating quantitative aspects of sequence specific protein-DNA complex single base mutants with changes in the easily calculated PD-deformability scale of the individual DNA sequence mutants. Using this PD approach, it may be possible in the future to understand the magnitude of biological or energetic functional effects of specific DNA sequence mutants within DNA-protein complexes in terms of their effect on DNA deformability

    Evidence for Hydrated Spermidine-Calf Thymus DNA Toruses Organized by Circumferential DNA Wrapping

    Get PDF
    In spermidine-condensed calf thymus DNA preparations, torus–shaped condensates were shown by transmission electron microscopy to exist under the hydrated conditions of the freeze fracture experiment. Using extremely low Pt metal deposition levels (9 A Pt/C) high–contrast replicas of the spermidine–DNA toruses were obtained that showed circumferential wrapping of single DNA double helix–size surface fibres. Stereoscopic analysis of high magnification stereomicrographs established some details of the three-dimensional organization of two DNA double helix sections winding circumferentially on the inner surface of one such torus. These measurements demonstrate the usefulness of stereoscopic analysis of these high macromolecular organization magnification. Measurements on a number of torus-shaped complexes (n=16) yielded these average dimensions: inner circumference (1840 ± 204, A) outer circumference (2800 ± 222 A), torus ring thickness (143 ± 18 A). These data support a continuous circumferential DNA–winding model of torus organization proposed by Marx Reynolds 1

    Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

    Get PDF
    We present a new theory for modeling forced indentation spectral lineshapes of biological particles, which considers non-linear Hertzian deformation due to an indenter-particle physical contact and bending deformations of curved beams modeling the particle structure. The bending of beams beyond the critical point triggers the particle dynamic transition to the collapsed state, an extreme event leading to the catastrophic force drop as observed in the force (F)-deformation (X) spectra. The theory interprets fine features of the spectra: the slope of the FX curves and the position of force-peak signal, in terms of mechanical characteristics --- the Young's moduli for Hertzian and bending deformations E_H and E_b, and the probability distribution of the maximum strength with the strength of the strongest beam F_b^* and the beams' failure rate m. The theory is applied to successfully characterize the FXFX curves for spherical virus particles --- CCMV, TrV, and AdV

    Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico

    Full text link
    Microtubules, the primary components of the chromosome segregation machinery, are stabilized by longitudinal and lateral non-covalent bonds between the tubulin subunits. However, the thermodynamics of these bonds and the microtubule physico-chemical properties are poorly understood. Here, we explore the biomechanics of microtubule polymers using multiscale computational modeling and nanoindentations in silico of a contiguous microtubule fragment. A close match between the simulated and experimental force-deformation spectra enabled us to correlate the microtubule biomechanics with dynamic structural transitions at the nanoscale. Our mechanical testing revealed that the compressed MT behaves as a system of rigid elements interconnected through a network of lateral and longitudinal elastic bonds. The initial regime of continuous elastic deformation of the microtubule is followed by the transition regime, during which the microtubule lattice undergoes discrete structural changes, which include first the reversible dissociation of lateral bonds followed by irreversible dissociation of the longitudinal bonds. We have determined the free energies of dissociation of the lateral (6.9+/-0.4 kcal/mol) and longitudinal (14.9+/-1.5 kcal/mol) tubulin-tubulin bonds. These values in conjunction with the large flexural rigidity of tubulin protofilaments obtained (18,000-26,000 pN*nm^2), support the idea that the disassembling microtubule is capable of generating a large mechanical force to move chromosomes during cell division. Our computational modeling offers a comprehensive quantitative platform to link molecular tubulin characteristics with the physiological behavior of microtubules. The developed in silico nanoindentation method provides a powerful tool for the exploration of biomechanical properties of other cytoskeletal and multiprotein assemblie

    A living cell quartz crystal microbalance biosensor for continuous monitoring of cytotoxic responses of macrophages to single-walled carbon nanotubes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Numerous engineered nanomaterials (ENMs) exist and new ENMs are being developed. A challenge to nanotoxicology and environmental health and safety is evaluating toxicity of ENMs before they become widely utilized. Cellular assays remain the predominant test platform yet these methods are limited by using discrete time endpoints and reliance on organic dyes, vulnerable to interference from ENMs. Label-free, continuous, rapid response systems with biologically meaningful endpoints are needed. We have developed a device to detect and monitor in real time responses of living cells to ENMs. The device, a living cell quartz crystal microbalance biosensor (QCMB), uses macrophages adherent to a quartz crystal. The communal response of macrophages to treatments is monitored continuously as changes in crystal oscillation frequency (Δf). We report the ability of this QCMB to distinguish benign from toxic exposures and reveal unique kinetic information about cellular responses to varying doses of single-walled carbon nanotubes (SWCNTs).</p> <p>Results</p> <p>We analyzed macrophage responses to additions of Zymosan A, polystyrene beads (PBs) (benign substances) or SWCNT (3-150 ÎŒg/ml) in the QCMB over 18 hrs. In parallel, toxicity was monitored over 24/48 hrs using conventional viability assays and histological stains to detect apoptosis. In the QCMB, a stable unchanging oscillation frequency occurred when cells alone, Zymosan A alone, PBs alone or SWCNTs without cells at the highest dose alone were used. With living cells in the QCMB, when Zymosan A, PBs or SWCNTs were added, a significant decrease in frequency occurred from 1-6 hrs. For SWCNTs, this Δf was dose-dependent. From 6-18 hrs, benign substances or low dose SWCNT (3-30 ÎŒg/ml) treatments showed a reversal of the decrease of oscillation frequency, returning to or exceeding pre-treatment levels. Cell recovery was confirmed in conventional assays. The lag time to see the Δf reversal in QCMB plots was linearly SWCNT-dose dependent. Lastly, the frequency never reversed at high dose SWCNT (100-150 ÎŒg/ml), and apoptosis/necrosis was documented in conventional 24 and 48 hr-assays.</p> <p>Conclusion</p> <p>These data suggest that the new QCMB detects and provides unique information about peak, sub-lethal and toxic exposures of living cells to ENMs before they are detected using conventional cell assays.</p

    Keratin gene expression profiles after digit amputation in C57BL/6 vs. regenerative MRL mice imply an early regenerative keratinocyte activated-like state

    Get PDF
    Mouse strains C57BL/6 (B6) and MRL were studied by whole mouse genome chip microarray analyses of RNA isolated from amputation sites at different times pre-and postamputation at the midsecond phalange of the middle digit. Many keratin genes were highly differentially expressed. All keratin genes were placed into three temporal response classes determined by injury/preinjury ratios. One class, containing only Krt6 and Krt16, were uniquely expressed relative to the other two classes and exhibited different temporal responses in MRL vs. B6. Immunohistochemical staining for Krt6 and Krt16 in tissue sections, including normal digit, flank skin, and small intestine, and from normal and injured ear pinna tissue exhibited staining differences in B6 (low) and MRL (high) that were consistent with the microarray results. Krt10 staining showed no injury-induced differences, consistent with microarray expression. We analyzed Krt6 and Krt16 gene association networks and observed in uninjured tissue several genes with higher expression levels in MRL, but not B6, that were associated with the keratinocyte activated state: Krt6, Krt16, S100a8, S100a9, and Il1b; these data suggest that keratinocytes in the MRL strain, but not in B6, are in an activated state prior to wounding. These expression levels decreased in MRL at all times postwounding but rose in the B6, peaking at day 3. Other keratins significantly expressed in the normal basal keratinocyte state showed no significant strain differences. These data suggest that normal MRL skin is in a keratinocyte activated state, which may provide it with superior responses to wounding. © 2013 the American Physiological Society
    • 

    corecore