9 research outputs found

    Antitumor efficiency and photostability of newly green synthesized silver/graphene oxide nanocomposite on different cancer cell lines

    No full text
    Abstract It is crucial to enhance new compounds for the treatment of most malignancies, and graphene oxide/silver nanocomposite (GO/Ag NC) has been paying attention to biomedical applications such as malignancies. In this work, green synthesized Ag@Cht NPs were successfully produced using chitosan for reduction and stabilization and added on GO sheet forming novel GO/Ag NC. Then, the produced anticancer nanomaterials GO, Ag@Cht NPs, and GO/Ag NC were assessed for their cytotoxicity against four distinct cancer cell lines: H460, HCT116, MDA-MB-468, and FaDu cells, at varying concentrations, using SRP assay after 48 h. The prepared nanomaterials were characterized by TEM, UV–Vis spectrophotometry, FTIRs, Raman spectroscopy and XRD. TEM images showed a regular spread of Ag@Cht NPs on the GO sheets with an average particle size of 15 nm. UV–Vis spectrophotometry shows two main characteristic peaks for GO/Ag NC, one close to 230 nm corresponds to GO, while the other peak at 425 nm due to Ag@Cht decorating the GO surface was blue shifted by few nanometers from 427 nm for Ag@Cht. Results of the laser irradiation by DPSS (diode-pumped solid state) confirm the photothermal stability of the prepared nanocomposite as there is no change in surface plasmon resonance (SPR) with varying exposure time. FTIRs measurements indicate that Ag ions interact with a hydroxyl group. This interaction shifts the O–H wavenumber and decreases the bond stretching intensity. In addition, Ag@Cht NPs and Ag/GO NC showed enhanced activity against cancerous cells. Results showed that GO, Ag@Cht NPs, and GO/Ag NC at (200, 400, and 600 µg/ml) had an impact on all evaluated cell lines. In MDA-MB-468, HCT116, H460, and FaDu cells, Ag@Cht NPs had the most effect across all employed cell lines, with IC50 values of 5.5, 9, 6, and 7.75 µg/ml, respectively. In conclusion, the produced novel nanocomposite may be an effective way to treat different cell lines, and future work is to use the prepared nanomaterials as anticancer drug delivery in photothermal chemotherapy combination treatment

    Design, synthesis and biological evaluation of a new thieno[2,3-d]pyrimidine-based urea derivative with potential antitumor activity against tamoxifen sensitive and resistant breast cancer cell lines

    No full text
    Breast cancer (BC) and endocrine resistance to chemotherapy are challenging problems where angiogenesis plays fundamental roles. Thus, targeting of VEGFR-2 signalling pathway has been an attractive approach. In this study, we synthesised a new sorafenib analogue, thieno[2,3-d]pyrimidine based urea derivative, KM6. It showed 65% inhibition of VEGF2 tyrosine kinase activity and demonstrated a potential antitumor activity in TAM-resistant, LCC2, and its parental MCF7 BC cells. KM6 retained the sensitivity of LCC2 through upregulation of key enzymes of apoptosis and proteins of cell death including caspases 3, 8, 9, P53, BAX/BCL-2 ratio and LDH in media. It downregulated mRNA expression of Ki-67, survivin, Akt, and reduced levels of ROS and glucose uptake. Moreover, KM6 reduced the levels of inflammation markers PGE2, COX2, IL-1β and IL6 and metastasis markers MMP-2 and MMP-9. In conclusion, KM6 is a promising compound for ER + and TAM-resistant BC with many potential antitumor and polypharmacological mechanisms

    Physico-chemical properties of curcumin nanoparticles and its efficacy against Ehrlich ascites carcinoma

    No full text
    Abstract Curcumin is a bioactive component with anticancer characteristics; nevertheless, it has poor solubility and fast metabolism, resulting in low bioavailability and so restricting its application. Curcumin loaded in nano emulsions (Cur-NE) was developed to improve water solubility and eliminate all the limitations of curcumin. Size distribution, zeta potential, transmission electron microscopy (TEM) measurements, UV–Visible spectra, IR spectra and thermogravimetric analysis (TGA), were used to characterize the prepared Cur-NE. Cancer therapeutic efficacy was assessed by oxidative stress (superoxide dismutase (SOD), Glutathione–S–Transferase (GST), malondialdehyde (MDA) and nitric oxide (NO), DNA damage, apoptotic proteins (caspase-3 and 9), besides investigating tumor histology and monitoring tumor growth. Additionally, the cytotoxicity and genotoxicity of the liver, kidney, heart, and spleen tissues were examined to gauge the adverse effects of the treatment method’s toxicity. The results showed that Cur-NE is more effective than free curcumin at slowing the growth of Ehrlich tumors while significantly increasing the levels of apoptotic proteins. On the other hand, Cur-NE-treated mice showed some damage in other organs when compared to mice treated with free curcumin. Cur-NE has a higher efficacy in treating Ehrlich tumor

    Biological evaluation, docking studies, and in silico ADME prediction of some pyrimidine and pyridine derivatives as potential EGFRWT and EGFRT790M inhibitors

    No full text
    AbstractHerein, a set of pyridine and pyrimidine derivatives were assessed for their impact on the cell cycle and apoptosis. Human breast cancer (MCF7), hepatocellular carcinoma (HEPG2), larynx cancer (HEP2), lung cancer (H460), colon cancers (HCT116 and Caco2), and hypopharyngeal cancer (FADU), and normal Vero cell lines were used. Compounds 8 and 14 displayed outstanding effects on the investigated cell lines and were further tested for their antioxidant activity in MCF7, H460, FADU, HEP2, HEPG2, HCT116, Caco2, and Vero cells by measuring superoxide dismutase (SOD), malondialdehyde content (MDA), reduced glutathione (GSH), and nitric oxide (NO) content. Besides, Annexin V-FITC apoptosis detection and cell cycle DNA index using the HEPG-2 cell line were established on both compounds as well. Furthermore, compounds 8 and 14 were assessed for their EGFR kinase (Wild and T790M) inhibitory activities, revealing eligible potential. Additionally, molecular docking, ADME, and SAR studies were carried out for the investigated candidates

    Design and statistical optimisation of emulsomal nanoparticles for improved anti-SARS-CoV-2 activity of N-(5-nitrothiazol-2-yl)-carboxamido candidates: in vitro and in silico studies

    No full text
    AbstractIn this article, emulsomes (EMLs) were fabricated to encapsulate the N-(5-nitrothiazol-2-yl)-carboxamido derivatives (3a–3g) in an attempt to improve their biological availability and antiviral activity. Next, both cytotoxicity and anti-SARS-CoV-2 activities of the examined compounds loaded EMLs (F3a–g) were assessed in Vero E6 cells via MTT assay to calculate the CC50 and inhibitory concentration 50 (IC50) values. The most potent 3e-loaded EMLs (F3e) elicited a selectivity index of 18 with an IC50 value of 0.73 μg/mL. Moreover, F3e was selected for further elucidation of a possible mode of action where the results showed that it exhibited a combination of virucidal (>90%), viral adsorption (>80%), and viral replication (>60%) inhibition. Besides, molecular docking and MD simulations towards the SARS-CoV-2 Mpro were performed. Finally, a structure–activity relationship (SAR) study focussed on studying the influence of altering the size, type, and flexibility of the α-substituent to the carboxamide in addition to compound contraction on SARS-CoV-2 activity.HighlightsEmulsomes (EMLs) were fabricated to encapsulate the N-(5-nitrothiazol-2-yl)-carboxamido derivatives (3a–3g).The most potent 3e-loaded EMLs (F3e) showed an IC50 value of 0.73 μg/mL against SARS-CoV-2.F3e exhibited a combination of virucidal (>90%), viral adsorption (>80%), and viral replication (>60%) inhibition.Molecular docking, molecular dynamics (MD) simulations, and MM-GBSA calculations were performed.Structure–activity relationship (SAR) study was discussed to study the influence of altering the size, type, and flexibility of the α-substituent to the carboxamide on the anti-SARS-CoV-2 activity
    corecore